Abstract
Analogs of cyclic AMP elevate the synthesis of tyrosine aminotransferase (L-tyrosine:2-oxoglutarate aminotransferase; EC 2.6.1.5) in cultured hepatoma cells and rat liver at a post-transcriptional level but have no discernible effect on total soluble protein synthesis. In order to determine whether cyclic AMP exerts its effect on a step before or after initiation of the synthesis of this enzyme, we have analyzed the ribosomal transit times for both the aminotransferase and total soluble protein in hepatoma cells incubated in the presence or absence of N6,O2′-dibutyryl cyclic AMP. The time required for one ribosome to translate one subunit of the “average” soluble protein (transit time) was about 2 min in cells incubated with or without the cyclic AMP analog. In contrast, the transit time for tyrosine aminotransferase was found to be reduced from 5-8 min under basal conditions to as low as 45 sec after exposure to dibutyryl cyclic AMP. Although the degree of effect varied from experiment to experiment, the relative rate of aminotransferase nascent chain elongation was found to be proportional to the stimulation of its activity. In contrast, dexamethasone did not alter the rate of aminotransferase elongation even though it elevated enzyme activity between 5- and 10-fold. These data are consistent with the hypothesis that induction of tyrosine aminotransferase with cyclic AMP analogs occurs by stimulation of the rate at which ribosomes translate pre-existing mRNA in contrast to adrenal steroids which act by increasing the level of translatable mRNA coding for this enzyme.
Keywords: ribosomal transit time, H35 hepatoma cells, dexamethasone
Full text
PDF![140](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e74/411200/2af794179e02/pnas00013-0145.png)
![141](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e74/411200/204c71903c3b/pnas00013-0146.png)
![142](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e74/411200/fcd5ed39705c/pnas00013-0147.png)
![143](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e74/411200/83d7f9c7fe9e/pnas00013-0148.png)
![144](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e74/411200/4bf0c763d57a/pnas00013-0149.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Auerbach S., Pederson T. Phosphorylation of messenger RNA-bound proteins in HeLa cells. Biochem Biophys Res Commun. 1975 Mar 3;63(1):149–156. doi: 10.1016/s0006-291x(75)80023-4. [DOI] [PubMed] [Google Scholar]
- Barnett C. A., Wicks W. D. Regulation of phosphoenolpyruvate carboxykinase and tyrosine transaminase in hepatoma cell cultures. I. Effects of glucocorticoids, N 6 ,O 2' -dibutyryl cyclic adenosine 3',5'-monophosphate and insulin in Reuber H35 cells. J Biol Chem. 1971 Dec 10;246(23):7201–7206. [PubMed] [Google Scholar]
- Beck J. P., Beck G., Wong K. Y., Tomkins G. M. Synthesis of inducible tyrosine aminotransferase in a cell-free extract from cultured hepatoma cells. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3615–3619. doi: 10.1073/pnas.69.12.3615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chong-Cheng C., Oliver I. T. A translational control mechanism in mammalian protein synthesis modulated by cyclic adenosine monophosphate. Translational control of tyrosine aminotransferase synthesis in neonatal rat liver. Biochemistry. 1972 Jun 20;11(13):2547–2553. doi: 10.1021/bi00763a026. [DOI] [PubMed] [Google Scholar]
- Craig N. Regulation of translation in rabbit reticulocytes and mouse L-cells; comparison of the effects of temperature. J Cell Physiol. 1975 Dec;87(2):157–166. doi: 10.1002/jcp.1040870204. [DOI] [PubMed] [Google Scholar]
- Craig N. The effects of inhibitors of RNA and DNA synthesis on protein synthesis and polysome levels in mouse L-cells. J Cell Physiol. 1973 Oct;82(2):133–150. doi: 10.1002/jcp.1040820202. [DOI] [PubMed] [Google Scholar]
- Fan H., Penman S. Regulation of protein synthesis in mammalian cells. II. Inhibition of protein synthesis at the level of initiation during mitosis. J Mol Biol. 1970 Jun 28;50(3):655–670. doi: 10.1016/0022-2836(70)90091-4. [DOI] [PubMed] [Google Scholar]
- Haggerty D. F., Young P. L., Popják G., Carnes W. H. Phenylalanine hydroxylase in cultured hepatoxytes. I. Hormonal control of enzyme levels. J Biol Chem. 1973 Jan 10;248(1):223–232. [PubMed] [Google Scholar]
- Harris S. E., Rosen J. M., Means A. R., O'Malley B. W. Use of a specific probe for ovalbumin messenger RNA to quantitate estrogen-induced gene transcripts. Biochemistry. 1975 May 20;14(10):2072–2081. doi: 10.1021/bi00681a006. [DOI] [PubMed] [Google Scholar]
- Heywood S. M., Kennedy D. S., Bester A. J. Stored myosin messenger in embryonic chick muscle. FEBS Lett. 1975 Apr 15;53(1):69–72. doi: 10.1016/0014-5793(75)80684-3. [DOI] [PubMed] [Google Scholar]
- Iynedjian P. B., Hanson R. W. Increase in level of functional messenger RNA coding for phosphoenolpyruvate carboxykinase (GTP) during induction by cyclic adenosine 3':5'-monophosphate. J Biol Chem. 1977 Jan 25;252(2):655–662. [PubMed] [Google Scholar]
- Lee K. L., Nickol J. M. Phosphorylation of tyrosine aminotransferase in vivo. J Biol Chem. 1974 Sep 25;249(18):6024–6026. [PubMed] [Google Scholar]
- Lodish H. F., Jacobsen M. Regulation of hemoglobin synthesis. Equal rates of translation and termination of - and -globin chains. J Biol Chem. 1972 Jun 10;247(11):3622–3629. [PubMed] [Google Scholar]
- Lodish H. F. Translational control of protein synthesis. Annu Rev Biochem. 1976;45:39–72. doi: 10.1146/annurev.bi.45.070176.000351. [DOI] [PubMed] [Google Scholar]
- Mathews R. W., Oronsky A., Haschemeyer A. E. Effect of thyroid hormone on polypeptide chain assembly kinetics in liver protein synthesis in vivo. J Biol Chem. 1973 Feb 25;248(4):1329–1333. [PubMed] [Google Scholar]
- Munns T. W., Johnston M. F., Liszewski M. K., Olson R. E. Vitamin K-dependent synthesis and modification of precursor prothrombin in cultured H-35 hepatoma cells. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2803–2807. doi: 10.1073/pnas.73.8.2803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nickol J. M., Lee K. L., Hollinger T. G., Kenney F. T. Translation of messenger RNA specific for tyrosine aminotransferase in oocytes of Xenopus laevis. Biochem Biophys Res Commun. 1976 Sep 20;72(2):687–693. doi: 10.1016/s0006-291x(76)80094-0. [DOI] [PubMed] [Google Scholar]
- Nielson J. B., Plant P. W., Hasochemeyer A. E. Polypeptide elongation factor 1 and the control of elongation rate in rat liver in vivo. Nature. 1976 Dec 23;264(5588):804–806. doi: 10.1038/264804a0. [DOI] [PubMed] [Google Scholar]
- PITOT H. C., PERAINO C., MORSE P. A., Jr, POTTER V. R. HEPATOMAS IN TISSUE CULTURE COMPARED WITH ADAPTING LIVER IN VIVO. Natl Cancer Inst Monogr. 1964 Apr;13:229–245. [PubMed] [Google Scholar]
- Palmiter R. D. Quantitation of parameters that determine the rate of ovalbumin synthesis. Cell. 1975 Mar;4(3):189–189. doi: 10.1016/0092-8674(75)90167-1. [DOI] [PubMed] [Google Scholar]
- Palmiter R. D. Rate of ovalbumin messenger ribonucleic acid synthesis in the oviduct of estrogen-primed chicks. J Biol Chem. 1973 Dec 10;248(23):8260–8270. [PubMed] [Google Scholar]
- Peterson J. A. Discontinuous variability, in the form of a geometric progression, of albumin production in hepatoma and hybrid cells. Proc Natl Acad Sci U S A. 1974 May;71(5):2062–2066. doi: 10.1073/pnas.71.5.2062. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roewekamp W. G., Hofer E., Sekeris C. E. Translation of mRNA from rat-liver polysomes into tyrosine aminotransferase and tryptophan oxygenase in a protein-synthesizing system from wheat germ. Effects of cortisol on the translatable levels of mRNA for these two enzymes. Eur J Biochem. 1976 Nov 1;70(1):259–268. doi: 10.1111/j.1432-1033.1976.tb10977.x. [DOI] [PubMed] [Google Scholar]
- Romero J. A., Zatz M., Axelrod J. Beta-adrenergic stimulation of pineal N-acetyltransferase: adenosine 3':5'-cyclic monophosphate stimulates both RNA and protein synthesis. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2107–2111. doi: 10.1073/pnas.72.6.2107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schimke R. T., Doyle D. Control of enzyme levels in animal tissues. Annu Rev Biochem. 1970;39:929–976. doi: 10.1146/annurev.bi.39.070170.004433. [DOI] [PubMed] [Google Scholar]
- Schutz G., Beato M., Feigelson P. Messenger RNA for hepatic tryptophan oxygenase: its partial purification, its translation in a heterologous cell-free system, and its control by glucocorticoid hormones. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1218–1221. doi: 10.1073/pnas.70.4.1218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott W. A., Shields R., Tomkins G. M. Mechanism of hormonal induction of tyrosine aminotransferase studied by measurement of the concentration of growing enzyme molecules. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2937–2941. doi: 10.1073/pnas.69.10.2937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shapiro D. J., Taylor J. M., McKnight G. S., Palacios R., Gonzalez C., Kiely M. L., Schimke R. T. Isolation of hen oviduct ovalbumin and rat live albumin polysomes by indirect immunoprecipitation. J Biol Chem. 1974 Jun 25;249(12):3665–3671. [PubMed] [Google Scholar]
- Valeriote F. A., Auricchio F., Tomkins G. M., Riley D. Purification and properties of rat liver tyrosine aminotransferase. J Biol Chem. 1969 Jul 10;244(13):3618–3624. [PubMed] [Google Scholar]
- Verma D. P., Maclachlan G. A., Byrne H., Ewings D. Regulation and in vitro translation of messenger ribonucleic acid for cellulase from auxin-treated pea epicotyls. J Biol Chem. 1975 Feb 10;250(3):1019–1026. [PubMed] [Google Scholar]
- Wagner K., Roper M. D., Leichtling B. H., Wimalasena J., Wicks W. D. Effects of 6- and 8-substituted analogs of adenosine 3':5'-monophosphate on phosphoenolpyruvate carboxykinase and tyrosine aminotransferase in hepatoma cell cultures. J Biol Chem. 1975 Jan 10;250(1):231–239. [PubMed] [Google Scholar]
- Wicks W. D. Induction of hepatic enzymes by adenosine 3',5'-monophosphate in organ culture. J Biol Chem. 1969 Jul 25;244(14):3941–3950. [PubMed] [Google Scholar]
- Wicks W. D., Kenney F. T., Lee K. L. Induction of hepatic enzyme synthesis in vivo by adenosine 3', 5'-monophosphate. J Biol Chem. 1969 Nov 10;244(21):6008–6013. [PubMed] [Google Scholar]
- Wicks W. D., McKibbin J. B. Evidence for translational regulation of specific enzyme synthesis by N 6 , O 2' -dibutyryl cyclic AMP in hepatoma cell cultures. Biochem Biophys Res Commun. 1972 Jul 11;48(1):205–211. doi: 10.1016/0006-291x(72)90364-6. [DOI] [PubMed] [Google Scholar]
- Wicks W. D. Regulation of protein synthesis by cyclic AMP. Adv Cyclic Nucleotide Res. 1974;4(0):335–438. [PubMed] [Google Scholar]
- Wicks W. D., van Wijk R., McKibbin J. B. Stimulation of enzyme synthesis and inhibition of DNA synthesis and growth rate by cyclic AMP derivatives in cultured hepatoma cells. Adv Enzyme Regul. 1973;11:117–135. doi: 10.1016/0065-2571(73)90012-5. [DOI] [PubMed] [Google Scholar]
- Zähringer J., Baliga B. S., Munro H. N. Novel mechanism for translational control in regulation of ferritin synthesis by iron. Proc Natl Acad Sci U S A. 1976 Mar;73(3):857–861. doi: 10.1073/pnas.73.3.857. [DOI] [PMC free article] [PubMed] [Google Scholar]