Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Jan;75(1):324–328. doi: 10.1073/pnas.75.1.324

Cytoplasmic inheritance of rutamycin resistance in mouse fibroblasts.

T Lichtor, G S Getz
PMCID: PMC411240  PMID: 146879

Abstract

Mouse fibroblasts resistant to the drug rutamycin were isolated by selectively introducing BrdUrd into the mitochondrial genome of a line of mouse fibroblasts (clone 1 D) lacking a cytoplasmic thymidine kinase enzyme. The ATPase (ATP phosphohydrolase; EC 3.6.1.3) activity of mitochondria isolated from these cells was resistant to rutamycin. The rutamycin-resistant mutants were enucleated with cytochalasin B and fused with mouse A 9 cells resistant to 8-azaguanine and sensitive to rutamycin. Cytoplasmic hybrids, or cybrids, were selected as cells resistant to rutamycin and 8-azaguanine, and appeared at a high frequency. Other fusions between rutamycin-resistant nucleated cells and A 9 produced colonies at a much lower frequency. Finally, fusions between enucleated clone 1 D cells and A 9 cells produced no rutamycin-resistant colonies. These results indicate that rutamycin resistance is a cytoplasmically inherited characteristic in this cell line.

Full text

PDF
324

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berk A. J., Clayton D. A. Mechanism of mitochondrial DNA replication in mouse L-cells: asynchronous replication of strands, segregation of circular daughter molecules, aspects of topology and turnover of an initiation sequence. J Mol Biol. 1974 Jul 15;86(4):801–824. doi: 10.1016/0022-2836(74)90355-6. [DOI] [PubMed] [Google Scholar]
  2. Bunn C. L., Wallace D. C., Eisenstadt J. M. Cytoplasmic inheritance of chloramphenicol resistance in mouse tissue culture cells. Proc Natl Acad Sci U S A. 1974 May;71(5):1681–1685. doi: 10.1073/pnas.71.5.1681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chu E. H., Sun N. C., Chang C. C. Induction of auxotrophic mutations by treatment of Chinese hamster cells with 5-bromodeoxyuridine and black light. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3459–3463. doi: 10.1073/pnas.69.11.3459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Croce C. M., Koprowski H. Enucleation of cells made simple and rescue of SV40 by enucleated cells made even simpler. Virology. 1973 Jan;51(1):227–229. doi: 10.1016/0042-6822(73)90382-6. [DOI] [PubMed] [Google Scholar]
  5. Ebner E., Mason T. L., Schatz G. Mitochondrial assembly in respiration-deficient mutants of Saccharomyces cerevisiae. II. Effect of nuclear and extrachromosomal mutations on the formation of cytochrome c oxidase. J Biol Chem. 1973 Aug 10;248(15):5369–5378. [PubMed] [Google Scholar]
  6. Gijzel W. P., Strating M., Kroon A. M. The biogenesis of mitochondria during proliferation and muturation of the intestinal epithelium of the rat. Effects of oxytetracycline. Cell Differ. 1972 Aug;1(3):191–198. doi: 10.1016/0045-6039(72)90028-0. [DOI] [PubMed] [Google Scholar]
  7. King E. J. The colorimetric determination of phosphorus. Biochem J. 1932;26(2):292–297. doi: 10.1042/bj0260292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kovác L., Weissová K. Oxidative phosphorylation in yeast. 3. ATPase activity of the mitochondrial fraction from a cytoplasmic respiratory-deficient mutant. Biochim Biophys Acta. 1968 Jan 15;153(1):55–59. doi: 10.1016/0005-2728(68)90145-x. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Lardy H., Reed P., Lin C. H. Antibiotic inhibitors of mitochondrial ATP synthesis. Fed Proc. 1975 Jul;34(8):1707–1710. [PubMed] [Google Scholar]
  11. Mitchell C. H., England J. M., Attardi G. Isolation of chloramphenicol-resistant variants from a human cell line. Somatic Cell Genet. 1975 Jul;1(3):215–234. doi: 10.1007/BF01538447. [DOI] [PubMed] [Google Scholar]
  12. Perlman P. S., Mahler H. R. Formation of yeast mitochondria. 3. Biochemical properties of mitochondria isolated from a cytoplasmic petite mutant. J Bioenerg. 1970 Jul;1(2):113–138. doi: 10.1007/BF01515977. [DOI] [PubMed] [Google Scholar]
  13. Pontecorvo G. Production of mammalian somatic cell hybrids by means of polyethylene glycol treatment. Somatic Cell Genet. 1975 Oct;1(4):397–400. doi: 10.1007/BF01538671. [DOI] [PubMed] [Google Scholar]
  14. RABINOWITZ M., DE BERNARD B. Studies on the electron transport system. X. Preparation and spectral properties of a particulate DPNH and succinate cytochrome c reductase from heart muscle. Biochim Biophys Acta. 1957 Oct;26(1):22–29. doi: 10.1016/0006-3002(57)90049-5. [DOI] [PubMed] [Google Scholar]
  15. Rabinowitz M., Getz G. S., Casey J., Swift H. Synthesis of mitochondrial and nuclear DNA in anerobically grown yeast during the development of mitochondrial function in response to oxygen. J Mol Biol. 1969 May 14;41(3):381–400. doi: 10.1016/0022-2836(69)90283-6. [DOI] [PubMed] [Google Scholar]
  16. Rao P. N., Johnson R. T. Premature chromosome condensation: a mechanism for the elimination of chromosomes in virus-fused cells. J Cell Sci. 1972 Mar;10(2):495–513. doi: 10.1242/jcs.10.2.495. [DOI] [PubMed] [Google Scholar]
  17. Schatz G. Impaired binding of mitochondrial adenosine triphosphatase in the cytoplasmic "petite" mutant of Saccharomyces cerevisiae. J Biol Chem. 1968 May 10;243(9):2192–2199. [PubMed] [Google Scholar]
  18. Schwartz A. G., Cook P. R., Harris H. Correction of a genetic defect in a mammalian cell. Nat New Biol. 1971 Mar 3;230(1):5–8. doi: 10.1038/newbio230005a0. [DOI] [PubMed] [Google Scholar]
  19. Siegel R. L., Jeffreys A. J., Sly W., Craig I. W. Isolation and detailed characterization of human cell lines resistant to D-threo-chloramphenicol. Exp Cell Res. 1976 Oct 15;102(2):298–310. doi: 10.1016/0014-4827(76)90045-8. [DOI] [PubMed] [Google Scholar]
  20. Spolsky C. M., Eisenstadt J. M. Chloramphenicol-resistant mutants of human HeLa cells. FEBS Lett. 1972 Sep 15;25(2):319–324. doi: 10.1016/0014-5793(72)80514-3. [DOI] [PubMed] [Google Scholar]
  21. Tzagoloff A. Assembly of the mitochondrial membrane system. 3. Function and synthesis of the oligomycin sensitivity-conferring protein of yeast mitochondria. J Biol Chem. 1970 Apr 10;245(7):1545–1551. [PubMed] [Google Scholar]
  22. Tzagoloff A. Assembly of the mitochondrial membrane system. I. Characterization of some enzymes of the inner membrane of yeast mitochondria. J Biol Chem. 1969 Sep 25;244(18):5020–5026. [PubMed] [Google Scholar]
  23. Tzagoloff A., Meagher P. Assesmbly of the mitochondrial membrane system. VI. Mitochondrial synthesis of subunit proteins of the rutamycin-sensitive adenosine triphosphatase. J Biol Chem. 1972 Jan 25;247(2):594–603. [PubMed] [Google Scholar]
  24. Tzagoloff A., Rubin M. S., Sierra M. F. Biosynthesis of mitochondrial enzymes. Biochim Biophys Acta. 1973 Feb 12;301(1):71–104. doi: 10.1016/0304-4173(73)90013-x. [DOI] [PubMed] [Google Scholar]
  25. Wallace D. C., Bunn C. L., Eisenstadt J. M. Cytoplasmic transfer of chloramphenicol resistance in human tissue culture cells. J Cell Biol. 1975 Oct;67(1):174–188. doi: 10.1083/jcb.67.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES