Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Jan;75(1):329–333. doi: 10.1073/pnas.75.1.329

Specificity of the effects of cytochalasin B on transport and motile processes.

S Lin, D C Lin, M D Flanagan
PMCID: PMC411241  PMID: 272649

Abstract

The effects of cytochalasin B (CB) and dihydrocytochalasin B (H2CB) on a variety of transport and motile processes have been compared. CB inhibited transport of D-glucose and L-glucose but not transport of thymidine in human erythrocytes. In contrast, H2CB, which differs from CB by the absence of a single double bond, had little or no effect on any of these processes. Both cytochalasins, however, affected the morphology of cultured fibroblasts and inhibited motile processes such as membrane ruffling, axon growth cone activity, blood clot retraction, cytoplasmic streaming, photodinesis, and cytokinesis. Determination of the partition coefficient of the two cytochalasins in several organic solvent/phosphate-buffered saline systems showed that H2CB has a higher affinity for the hydrophobic phase than CB. These results indicate that the inhibitory effects of CB on sugar transport and on cell motility and morphology are separable and independent events, mediated by the binding of the drug to specific cellular receptors.

Full text

PDF
329

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atlas S. J., Lin S. High-affinity cytochalasin B binding to normal and transformed BALB/3T3 cells. J Cell Physiol. 1976 Dec;89(4):751–756. doi: 10.1002/jcp.1040890436. [DOI] [PubMed] [Google Scholar]
  2. Bloch R. Inhibition of glucose transport in the human erythrocyte by cytochalasin B. Biochemistry. 1973 Nov 6;12(23):4799–4801. doi: 10.1021/bi00747a036. [DOI] [PubMed] [Google Scholar]
  3. Carter S. B. Effects of cytochalasins on mammalian cells. Nature. 1967 Jan 21;213(5073):261–264. doi: 10.1038/213261a0. [DOI] [PubMed] [Google Scholar]
  4. Ebstensen R. D., Plagemann P. G. Cytochalasin B: inhibition of glucose and glucosamine transport. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1430–1434. doi: 10.1073/pnas.69.6.1430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GUEST G. M., MACKLER B., GRAUBARTH H., AMMENTORP P. A. Rates of utilization of glucose in erythrocytes and leucocytes. Am J Physiol. 1953 Feb;172(2):295–300. doi: 10.1152/ajplegacy.1953.172.2.295. [DOI] [PubMed] [Google Scholar]
  6. Graff J. C., Wohlhueter R. M., Plagemann P. G. Effect of temperature and of cytochalasin B and persantin on the nonmediated permeation of non-electrolytes into cultured Novikoff rat hepatoma cells. J Biol Chem. 1977 Jun 25;252(12):4185–4190. [PubMed] [Google Scholar]
  7. Lin S., Snyder C. E., Jr High affinity cytochalasin B binding to red cell membrane proteins which are unrelated to sugar transport. J Biol Chem. 1977 Aug 10;252(15):5464–5471. [PubMed] [Google Scholar]
  8. Lin S., Spudich J. A. Binding of cytochalasin B to a red cell membrane protein. Biochem Biophys Res Commun. 1974 Dec 23;61(4):1471–1476. doi: 10.1016/s0006-291x(74)80449-3. [DOI] [PubMed] [Google Scholar]
  9. Lin S., Spudich J. A. Biochemical studies on the mode of action of cytochalasin B. Cytochalasin B binding to red cell membrane in relation to glucose transport. J Biol Chem. 1974 Sep 25;249(18):5778–5783. [PubMed] [Google Scholar]
  10. Mayhew E., Poste G., Cowden M., Tolson N., Maslow D. Cellular binding of 3H-cytochalasin B. J Cell Physiol. 1974 Dec;84(3):373–382. doi: 10.1002/jcp.1040840306. [DOI] [PubMed] [Google Scholar]
  11. Miranda A. F., Godman G. C., Deitch A. D., Tanenbaum S. W. Action of cytochalasin D on cells of established lines. I. Early events. J Cell Biol. 1974 May;61(2):481–500. doi: 10.1083/jcb.61.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Oliver J. M., Paterson A. R. Nucleoside transport. I. A mediated process in human erythrocytes. Can J Biochem. 1971 Feb;49(2):262–270. doi: 10.1139/o71-038. [DOI] [PubMed] [Google Scholar]
  13. Plagemann P. G., Graff J. C., Wohlhueter R. M. Binding of [3H]cytochalasin B and its relationship to inhibition of hexose transport in Novkoff rat hepatoma cells. J Biol Chem. 1977 Jun 25;252(12):4191–4201. [PubMed] [Google Scholar]
  14. Plagemann P. G., Zylka J. H., Erbe J., Estensen R. D. Membrane effects of cytochalasin B. Competitive inhibition of facilitated diffusion processes in rat hepatoma cells and other cell lines and effect on formation of functional transport sites. J Membr Biol. 1975 Aug 11;23(1):77–90. doi: 10.1007/BF01870245. [DOI] [PubMed] [Google Scholar]
  15. Prescott D. M., Myerson D., Wallace J. Enucleation of mammalian cells with cytochalasin B. Exp Cell Res. 1972;71(2):480–485. doi: 10.1016/0014-4827(72)90322-9. [DOI] [PubMed] [Google Scholar]
  16. SEN A. K., WIDDAS W. F. Determination of the temperature and pH dependence of glucose transfer across the human erythrocyte membrane measured by glucose exit. J Physiol. 1962 Mar;160:392–403. doi: 10.1113/jphysiol.1962.sp006854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sanger J. W., Holtzer H. Cytochalasin B: effects on cell morphology, cell adhesion, and mucopolysaccharide synthesis (cultured cells-contractile microfilaments-glycoproteins-embryonic cells-sorting-out). Proc Natl Acad Sci U S A. 1972 Jan;69(1):253–257. doi: 10.1073/pnas.69.1.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schroeder T. E. The contractile ring. II. Determining its brief existence, volumetric changes, and vital role in cleaving Arbacia eggs. J Cell Biol. 1972 May;53(2):419–434. doi: 10.1083/jcb.53.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Taverna R. D., Langdon R. G. Reversible association of cytochalasin B with the human erythrocyte membrane. Inhibition of glucose transport and the stoichiometry of cytochalasin binding. Biochim Biophys Acta. 1973 Oct 11;323(2):207–219. doi: 10.1016/0005-2736(73)90145-4. [DOI] [PubMed] [Google Scholar]
  20. Taylor N. F., Gagneja G. L. A model for the mode of action of cytochalasin B inhibition of D-glucose transport in the human erythrocyte. Can J Biochem. 1975 Oct;53(10):1078–1084. doi: 10.1139/o75-148. [DOI] [PubMed] [Google Scholar]
  21. Wessells N. K., Spooner B. S., Ash J. F., Bradley M. O., Luduena M. A., Taylor E. L., Wrenn J. T., Yamada K. Microfilaments in cellular and developmental processes. Science. 1971 Jan 15;171(3967):135–143. doi: 10.1126/science.171.3967.135. [DOI] [PubMed] [Google Scholar]
  22. Yamada K. M., Spooner B. S., Wessells N. K. Axon growth: roles of microfilaments and microtubules. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1206–1212. doi: 10.1073/pnas.66.4.1206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yavin E., Yavin Z. Attachment and culture of dissociated cells from rat embryo cerebral hemispheres on polylysine-coated surface. J Cell Biol. 1974 Aug;62(2):540–546. doi: 10.1083/jcb.62.2.540. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES