Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Jan;75(1):441–445. doi: 10.1073/pnas.75.1.441

Periodic loss of reactivity of a myeloma tumor with cytotoxic thymus-derived lymphocytes.

J H Russell, A H Hale, L C Ginns, H N Eisen
PMCID: PMC411265  PMID: 75547

Abstract

During each transplantation passage of a line of mouse myeloma tumor MOPC-315 through syngeneic (BALB/c) hosts, the tumor cells lose reactivity with cytotoxic thymus-derived lymphocytes directed against products of the BALB/c major histocompatibility complex (H-2d) and regain reactivity on transfer to fresh hosts. In contrast to this cyclical change, the tumor cells remain uniformly reactive with anti-H-2d alloantisera throughout the transplantation cycle.

Full text

PDF
441

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey D. W., Kohn H. I. Inherited histocompatibility changes in progeny of irradiated and unirradiated inbred mice. Genet Res. 1965 Nov;6(3):330–340. doi: 10.1017/s0016672300004225. [DOI] [PubMed] [Google Scholar]
  2. Bevan M. J. The major histocompatibility complex determines susceptibility to cytotoxic T cells directed against minor histocompatibility antigens. J Exp Med. 1975 Dec 1;142(6):1349–1364. doi: 10.1084/jem.142.6.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Biddison W. E., Palmer J. C. Development of tumor cell resistance to syngeneic cell-mediated cytotoxicity during growth of ascitic mastocytoma P815Y. Proc Natl Acad Sci U S A. 1977 Jan;74(1):329–333. doi: 10.1073/pnas.74.1.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blank K. J., Freedman H. A., Lilly F. T-lymphocytes response to Friend virus-induced tumour cell lines in mice of strains congenic at H--2. Nature. 1976 Mar 18;260(5548):250–252. doi: 10.1038/260250a0. [DOI] [PubMed] [Google Scholar]
  5. Gomard E., Duprez V., Reme T., Colombani M. J., Levy J. P. Exclusive involvement of H-2Db or H-2Kd product in the interaction between T-killer lymphocytes and syngeneic H-2b or H-2d viral lymphomas. J Exp Med. 1977 Oct 1;146(4):909–922. doi: 10.1084/jem.146.4.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gordon R. D., Simpson E., Samelson L. E. In vitro cell-mediated immune responses to the male specific(H-Y) antigen in mice. J Exp Med. 1975 Nov 1;142(5):1108–1120. doi: 10.1084/jem.142.5.1108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mishell R. I., Dutton R. W. Immunization of dissociated spleen cell cultures from normal mice. J Exp Med. 1967 Sep 1;126(3):423–442. doi: 10.1084/jem.126.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rehn T. G., Shearer G. M., Koren H. S., Inman J. K. Cell-mediated lympholysis of N-(3-nitro-4-hydroxy-5-iodophenylacetyl)-beta-anaylglycylglycyl-modified autologous lymphocytes. Effector cell specificity to modified cell surface components controlled by the H-2K and H-2D serological regions of the murine major histocompatibility complex. J Exp Med. 1976 Jan 1;143(1):127–142. doi: 10.1084/jem.143.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rohrer J. W., Vasa K., Lynch R. G. Myeloma cell immunoglobulin expression during in vivo growth in diffusion chambers: evidence for repetitive cycles of differentiation. J Immunol. 1977 Sep;119(3):861–866. [PubMed] [Google Scholar]
  10. Saunders G. C., Wilder M. Repetitive maturation cycles in a cultured mouse myeloma. J Cell Biol. 1971 Oct;51(1):344–348. doi: 10.1083/jcb.51.1.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Shearer G. M. Cell-mediated cytotoxicity to trinitrophenyl-modified syngeneic lymphocytes. Eur J Immunol. 1974 Aug;4(8):527–533. doi: 10.1002/eji.1830040802. [DOI] [PubMed] [Google Scholar]
  12. Starzinski-Powitz A., Pfizenmaier K., Röllinghoff M., Wagner H. In vivo sensitization of T cells to hapten-conjugated syngeneic structures of major histocompatibility complex. I. Effect of in vitro culture upon generation of cytotoxic T lymphocytes. Eur J Immunol. 1976 Nov;6(11):799–805. doi: 10.1002/eji.1830061109. [DOI] [PubMed] [Google Scholar]
  13. Takahashi T., Old L. J., Boyse E. A. Surface alloantigens of plasma cells. J Exp Med. 1970 Jun 1;131(6):1325–1341. doi: 10.1084/jem.131.6.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Warnatz H., Krapf F. Studies on the specificity of in vitro induced lymphocytotoxicity to SV40-transformed fibroblasts. J Immunol. 1976 Sep;117(3):981–985. [PubMed] [Google Scholar]
  15. Widmer M. B., Alter B. J., Bach F. H., Bach M. L. Lymphocyte reactivity to serologically undetected components of the major histocompatibility complex. Nat New Biol. 1973 Apr 25;242(121):239–241. doi: 10.1038/newbio242239a0. [DOI] [PubMed] [Google Scholar]
  16. Zinkernagel R. M., Doherty P. C. H-2 compatability requirement for T-cell-mediated lysis of target cells infected with lymphocytic choriomeningitis virus. Different cytotoxic T-cell specificities are associated with structures coded for in H-2K or H-2D;. J Exp Med. 1975 Jun 1;141(6):1427–1436. doi: 10.1084/jem.141.6.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zinkernagel R. M. H-2 restriction of virus-specific cytotoxicity across the H-2 barrier. Separate effector T-cell specificities are associated with self-H-2 and with the tolerated allogeneic H-2 in chimeras. J Exp Med. 1976 Oct 1;144(4):933–945. doi: 10.1084/jem.144.4.933. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES