Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Jan;75(1):490–494. doi: 10.1073/pnas.75.1.490

Proliferative capacity of murine hematopoietic stem cells.

S Hellman, L E Botnick, E C Hannon, R M Vigneulle
PMCID: PMC411276  PMID: 24217

Abstract

The present study demonstrates a decrease in self-renewal capacity with serial transfer of murine hematopoietic stem cells. Production of differentiated cell progeny is maintained longer than stem cell self-renewal. In normal animals the capacity for self-renewal is not decreased with increasing donor age. The stem cell compartment in normal animals, both young and old, appears to be proliferative quiescent. After apparent recovery from the alkylating agent busulfan, the probability of stem cell self-renewal is decreased, there is a permanent defect in the capacity of the bone marrow for serial transplantation, and the stem cells are proliferatively active. These findings support a model of the hematopoietic stem cell compartment as a continuum of cells with decreasing capacities for self-renewal, increasing likelihood for differentiation, and increasing proliferative activity. Cell progress in the continuum in one direction and such progression is not reversible.

Full text

PDF
490

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARNES D. W., FORD C. E., LOUTIT J. F. [Serial grafts of homologous bone marrow in irradiated mice]. Sang. 1959;30:762–765. [PubMed] [Google Scholar]
  2. BARNES D. W., LOUTIT J. F., MICKLEM H. S. "Secondary disease" of radiation chimeras: a syndrome due to lymphoid aplasia. Ann N Y Acad Sci. 1962 Oct 24;99:374–385. doi: 10.1111/j.1749-6632.1962.tb45321.x. [DOI] [PubMed] [Google Scholar]
  3. Botnick L. E., Hannon E. C., Hellman S. Limited proliferation of stem cells surviving alkylating agents. Nature. 1976 Jul 1;262(5563):68–70. doi: 10.1038/262068a0. [DOI] [PubMed] [Google Scholar]
  4. CUDKOWICZ G., UPTON A. C., SHEARER G. M., HUGHES W. L. LYMPHOCYTE CONTENT AND PROLIFERATIVE CAPACITY OF SERIALLY TRANSPLANTED MOUSE BONE MARROW. Nature. 1964 Jan 11;201:165–167. doi: 10.1038/201165a0. [DOI] [PubMed] [Google Scholar]
  5. Daniel C. W., De Ome K. B., Young J. T., Blair P. B., Faulkin L. J., Jr The in vivo life span of normal and preneoplastic mouse mammary glands: a serial transplantation study. Proc Natl Acad Sci U S A. 1968 Sep;61(1):53–60. doi: 10.1073/pnas.61.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Daniel C. W. Finite growth span of mouse mammary gland serially propagated in vivo. Experientia. 1973 Nov 15;29(11):1422–1424. doi: 10.1007/BF01922854. [DOI] [PubMed] [Google Scholar]
  7. Goodman R., Grate H., Hannon E., Hellman S. Hematopoietic stem cells: effect of preirradiation, bleeding, and erythropoietin on thrombopoietic differentiation. Blood. 1977 Feb;49(2):253–261. [PubMed] [Google Scholar]
  8. HAYFLICK L. THE LIMITED IN VITRO LIFETIME OF HUMAN DIPLOID CELL STRAINS. Exp Cell Res. 1965 Mar;37:614–636. doi: 10.1016/0014-4827(65)90211-9. [DOI] [PubMed] [Google Scholar]
  9. Harrison D. E. Normal function of transplanted marrow cell lines from aged mice. J Gerontol. 1975 May;30(3):279–285. doi: 10.1093/geronj/30.3.279. [DOI] [PubMed] [Google Scholar]
  10. Harrison D. E. Normal function of transplanted mouse erythrocyte precursors for 21 months beyond donor life spans. Nat New Biol. 1972 Jun 14;237(76):220–222. doi: 10.1038/newbio237220a0. [DOI] [PubMed] [Google Scholar]
  11. Harrison D. E. Normal production of erythrocytes by mouse marrow continuous for 73 months. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3184–3188. doi: 10.1073/pnas.70.11.3184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hellman S., Botnick L. E. Stem cell depletion: an explanation of the late effects of cytotoxins. Int J Radiat Oncol Biol Phys. 1977 Jan-Feb;2(1-2):181–184. doi: 10.1016/0360-3016(77)90028-1. [DOI] [PubMed] [Google Scholar]
  13. Hoshino K., Gardner W. U. Transplantability and life span of mammary gland during serial transplantation in mice. Nature. 1967 Jan 14;213(5072):193–194. doi: 10.1038/213193a0. [DOI] [PubMed] [Google Scholar]
  14. KAY H. E. HOW MANY CELL-GENERATIONS? Lancet. 1965 Aug 28;2(7409):418–419. doi: 10.1016/s0140-6736(65)90763-4. [DOI] [PubMed] [Google Scholar]
  15. KROHN P. L. Review lectures on senescence. II. Heterochronic transplantation in the study of ageing. Proc R Soc Lond B Biol Sci. 1962 Dec 18;157:128–147. doi: 10.1098/rspb.1962.0066. [DOI] [PubMed] [Google Scholar]
  16. Kretchmar A. L., Conover W. R. A difference between spleen-derived and bone marrow-derived colony-forming units in ability to protect lethally irradiated mice. Blood. 1970 Dec;36(6):772–776. [PubMed] [Google Scholar]
  17. Micklem H. S., Anderson N., Ross E. Limited potential of circulating haemopoietic stem cells. Nature. 1975 Jul 3;256(5512):41–43. doi: 10.1038/256041a0. [DOI] [PubMed] [Google Scholar]
  18. Reincke U., Burlington H., Cronkite E. P., Laissue J. Hayflick's hypothesis: an approach to in vivo testing. Fed Proc. 1975 Jan;34(1):71–75. [PubMed] [Google Scholar]
  19. SIMINOVITCH L., MCCULLOCH E. A., TILL J. E. THE DISTRIBUTION OF COLONY-FORMING CELLS AMONG SPLEEN COLONIES. J Cell Physiol. 1963 Dec;62:327–336. doi: 10.1002/jcp.1030620313. [DOI] [PubMed] [Google Scholar]
  20. SIMINOVITCH L., TILL J. E., MCCULLOCH E. A. DECLINE IN COLONY-FORMING ABILITY OF MARROW CELLS SUBJECTED TO SERIAL TRANSPLANTATION INTO IRRADIATED MICE. J Cell Physiol. 1964 Aug;64:23–31. doi: 10.1002/jcp.1030640104. [DOI] [PubMed] [Google Scholar]
  21. Schofield R., Lajtha L. G. Effect of isopropyl methane sulphonate (IMS) on haemopoietic colony-forming cells. Br J Haematol. 1973 Aug;25(2):195–202. doi: 10.1111/j.1365-2141.1973.tb01730.x. [DOI] [PubMed] [Google Scholar]
  22. TILL J. E., MCCULLOCH E. A., SIMINOVITCH L. A STOCHASTIC MODEL OF STEM CELL PROLIFERATION, BASED ON THE GROWTH OF SPLEEN COLONY-FORMING CELLS. Proc Natl Acad Sci U S A. 1964 Jan;51:29–36. doi: 10.1073/pnas.51.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. TILL J. E., McCULLOCH E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961 Feb;14:213–222. [PubMed] [Google Scholar]
  24. Vogel H., Niewisch H., Matioli G. The self renewal probability of hemopoietic stem cells. J Cell Physiol. 1968 Dec;72(3):221–228. doi: 10.1002/jcp.1040720309. [DOI] [PubMed] [Google Scholar]
  25. Vos O., Dolmans M. J. Self-renewal of colony forming units (CFU) in serial bone marrow transplantation experiments. Cell Tissue Kinet. 1972 Sep;5(5):371–385. doi: 10.1111/j.1365-2184.1972.tb00376.x. [DOI] [PubMed] [Google Scholar]
  26. Williamson A. R., Askonas B. A. Senescence of an antibody-forming cell clone. Nature. 1972 Aug 11;238(5363):337–339. doi: 10.1038/238337a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES