Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Feb;75(2):600–604. doi: 10.1073/pnas.75.2.600

Search for relationships among the hemolytic, phospholipolytic, and neurotoxic activities of snake venoms

T-W Jeng 1, R A Hendon 1,*, H Fraenkel-Conrat 1,
PMCID: PMC411303  PMID: 273221

Abstract

Several snake venom neurotoxins are larger and more complex than the well-studied group of postsynaptic toxins exemplified by α-bungarotoxin. Several of these, exemplified by β-bungarotoxin, show phospholipase A2 activity (phosphatide 2-acylhydrolase, EC 3.1.1.4) when tested in the presence of detergents. The high hemolytic activity of crotoxin, the neurotoxin of Crotalus durissus terrificus, in the presence of lecithin has been attributed to this activity. The phospholipase A2 activity of several snake venom proteins has now been compared under the physiological conditions of the hemolysis tests.

It appears that only the basic component of crotoxin, B, is enzymatically active, and that its activity is not inhibited by component A under these conditions, or in the presence of deoxycholate. Phosphatidylserine is found to be digested more readily than egg white phosphatidylcholine; and also causes hemolysis in conjunction with much lower levels of crotoxin. In neither case is calcium required or stimulating.

Phospholipase from Crotalus adamanteus, which is not neurotoxic, digests phosphatidylcholine more rapidly than does crotoxin, but phosphatidylserine more slowly; yet it is slightly less active than crotoxin in the hemolysis test with phosphatidylcholine, and much less with phosphatidylserine. The digestion of several phospholipids by either enzyme fails to release the expected protons in the absence of detergents at 37°.

β-Bungarotoxin, highly neurotoxic, has negligible phospholipase A2 activity in the absence of detergents, and is almost nonhemolytic in conjunction with all phospholipids tested.

Binding studies with 125I-labeled compounds show that rabbit erythrocytes and ghosts have much greater affinity for crotoxin than for β-bungarotoxin and do not bind Crotalus adamanteus phospholipase. The crotoxin complex is split in the course of binding, with only component B, the hemolytic component, becoming bound. It appears that the role of component A may be to diminish the nonspecific binding tendency of component B.

Our data appear to be consistent with the concepts that affinity to membranes, particularly to specific sites on synaptic membranes, is the critical requirement for β type neurotoxicity, and that this property, at least in some instances, has evolved from phospholipase A2 enzymes, but does not necessarily require retention and expression of enzymatic activity.

Keywords: crotoxin components, bungarotoxins, phospholipase A2

Full text

PDF
600

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Breithaupt H. Enzymatic characteristics of crotalus phospholipase A2 and the crotoxin complex. Toxicon. 1976;14(3):221–233. doi: 10.1016/0041-0101(76)90010-6. [DOI] [PubMed] [Google Scholar]
  2. Breithaupt H., Rübsamen K., Habermann E. Biochemistry and pharmacology of the crotoxin complex. Biochemical analysis of crotapotin and the basic Crotalus phospholipase A. Eur J Biochem. 1974 Nov 15;49(2):333–345. doi: 10.1111/j.1432-1033.1974.tb03838.x. [DOI] [PubMed] [Google Scholar]
  3. Chang C. C., Lee J. D. Crotoxin, the neurotoxin of South American rattlesnake venom, is a presynaptic toxin acting like beta-bungarotoxin. Naunyn Schmiedebergs Arch Pharmacol. 1977 Jan;296(2):159–168. doi: 10.1007/BF00508469. [DOI] [PubMed] [Google Scholar]
  4. Chang C. C., Su M. J., Lee J. D., Eaker D. Effects of Sr2+ and Mg2+ on the phospholipase A and the presynaptic neuromuscular blocking actions of beta-bungarotoxin, crotoxin and taipoxin. Naunyn Schmiedebergs Arch Pharmacol. 1977 Sep;299(2):155–161. doi: 10.1007/BF00498557. [DOI] [PubMed] [Google Scholar]
  5. FRAENKEL-CONRAT H., SINGER B. Fractionation and composition of crotoxin. Arch Biochem Biophys. 1956 Jan;60(1):64–73. doi: 10.1016/0003-9861(56)90397-6. [DOI] [PubMed] [Google Scholar]
  6. Fohlman J., Eaker D., Karlsoon E., Thesleff S. Taipoxin, an extremely potent presynaptic neurotoxin from the venom of the australian snake taipan (Oxyuranus s. scutellatus). Isolation, characterization, quaternary structure and pharmacological properties. Eur J Biochem. 1976 Sep 15;68(2):457–469. doi: 10.1111/j.1432-1033.1976.tb10833.x. [DOI] [PubMed] [Google Scholar]
  7. HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
  8. Halpert J., Eaker D., Karlsson E. The role of phospholipase activity in the action of a presynaptic neurotoxin from the venom of Notechis scutatus scutatus (Australian tiger snake). FEBS Lett. 1976 Jan 1;61(1):72–76. doi: 10.1016/0014-5793(76)80174-3. [DOI] [PubMed] [Google Scholar]
  9. Hawgood B. J., Smith J. The presynaptic action of crotoxin at the murine neuromuscular junction [proceedings]. J Physiol. 1977 Mar;266(1):91P–92P. [PubMed] [Google Scholar]
  10. Hendon R. A., Fraenkel-Conrat H. Biological roles of the two components of crotoxin. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1560–1563. doi: 10.1073/pnas.68.7.1560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hendon R. A., Fraenkel-Conrat H. The role of complex formation in the neurotoxicity of crotoxin components A and B. Toxicon. 1976;14(4):283–289. doi: 10.1016/0041-0101(76)90024-6. [DOI] [PubMed] [Google Scholar]
  12. Howard B. D., Truog R. Relationship between the neurotoxicity and phospholipase A activity of beta-bungarotoxin. Biochemistry. 1977 Jan 11;16(1):122–125. doi: 10.1021/bi00620a020. [DOI] [PubMed] [Google Scholar]
  13. Inoue K., Kitagawa T. Effect of exogenous lysolecithin on liposomal membranes. Its relation to membrane fluidity. Biochim Biophys Acta. 1974 Sep 23;363(3):361–372. doi: 10.1016/0005-2736(74)90075-3. [DOI] [PubMed] [Google Scholar]
  14. Jeng T. W., Fraenkel-Conrat H. Activation of crotoxin B by volvatoxin A2. Biochem Biophys Res Commun. 1976 Jun 21;70(4):1324–1328. doi: 10.1016/0006-291x(76)91047-0. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Martin J. K., Luthra M. G., Wells M. A., Watts R. P., Hanahan D. J. Phospholipase A2 as a probe of phospholipid distribution in erythrocyte membranes. Factors influencing the apparent specificity of the reaction. Biochemistry. 1975 Dec 16;14(25):5400–5408. doi: 10.1021/bi00696a003. [DOI] [PubMed] [Google Scholar]
  17. Oberg S. G., Kelly R. B. Saturable binding to cell membranes of the presynaptic neurotoxin, beta-bungarotoxin. Biochim Biophys Acta. 1976 May 21;433(3):662–673. doi: 10.1016/0005-2736(76)90289-3. [DOI] [PubMed] [Google Scholar]
  18. RYLE A. P. PEPSINOGEN B: THE ZYMOGEN OF PEPSIN B. Biochem J. 1965 Jul;96:6–16. doi: 10.1042/bj0960006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rübsamen K., Breithaupt H., Habermann E. Biochemistry and pharmacology of the crotoxin complex. I. Subfractionation and recombination of the crotoxin complex. Naunyn Schmiedebergs Arch Pharmakol. 1971;270(3):274–288. doi: 10.1007/BF00997027. [DOI] [PubMed] [Google Scholar]
  20. Strong P. N., Goerke J., Oberg S. G., Kelly R. B. beta-Bungarotoxin, a pre-synaptic toxin with enzymatic activity. Proc Natl Acad Sci U S A. 1976 Jan;73(1):178–182. doi: 10.1073/pnas.73.1.178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wells M. A. A simple and high yield purification of Crotalus adamanteus phospholipases A2. Biochim Biophys Acta. 1975 Mar 24;380(3):501–505. doi: 10.1016/0005-2760(75)90119-8. [DOI] [PubMed] [Google Scholar]
  22. de Haas G. H., Postema N. M., Nieuwenhuizen W., van Deenen L. L. Purification and properties of phospholipase A from porcine pancreas. Biochim Biophys Acta. 1968 Apr 24;159(1):103–117. doi: 10.1016/0005-2744(68)90248-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES