Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Feb;75(2):630–634. doi: 10.1073/pnas.75.2.630

Fluorine-19 nuclear magnetic resonance studies of Escherichia coli membranes.

M P Gent, P F Cottam, C Ho
PMCID: PMC411309  PMID: 345274

Abstract

Several fluorinated fatty acids of the general structure CH3(CH2)13--mCF2(CH2)m--2COOH are incorporated biosynthetically as unsaturated fatty acid analogues into the phospholipids of Escherichia coli. Under optimum conditions an unsaturated fatty acid autotroph, K1060B5, can be grown so that 50% of the total phospholipid fatty acids are 8,8-difluoromyristate. Conditions are found for which more than 20% of the fatty acids are fluorinated before a decrease in growth rate is observed. We have used 19F nuclear magnetic resonance to examine membranes isolated from E. coli grown under the latter conditions. A comparison is made with spectra of aqueous dispersions of extracted E. coli phospholipids and model multilayer phospholipid membranes. An explanation of the 19F resonance line shape in these membrane systems and the relationship to a molecular order parameter is given. It is apparent that 19F nuclear magnetic resonance is more sensitive to the degree of ordering or fluidity of phospholipids than spin labels or fluorescent probes. For instance, a dramatic effect of membrane protein on lipid fluidity can be seen. Finally, this method can be used to measure the proportion of frozen and fluid lipid in biological membranes at temperatures within the span of the gel-to-lipid phase transition.

Full text

PDF
630

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Baldassare J. J., Robertson D. E., McAfee A. G., Ho C. A spin-label study of energy-coupled active transport in Escherichia coli membrane vesicles. Biochemistry. 1974 Dec 3;13(25):5210–5214. doi: 10.1021/bi00722a025. [DOI] [PubMed] [Google Scholar]
  3. Bieri V. G., Wallach D. F. Variations of lipid-protein interactions in erythrocyte ghosts as a function of temperature and pH in physiological and non-physiological ranges. A study using a paramagnetic quenching of protein fluorescence by nitroxide lipid analogues. Biochim Biophys Acta. 1975 Oct 17;406(3):415–423. doi: 10.1016/0005-2736(75)90020-6. [DOI] [PubMed] [Google Scholar]
  4. Birdsall N. J., Ellar D. J., Lee A. G., Metcalfe J. C., Warren G. B. 13C-enriched phosphatidylethanolamines from Escherichia coli. Biochim Biophys Acta. 1975 Feb 20;380(2):344–354. doi: 10.1016/0005-2760(75)90020-x. [DOI] [PubMed] [Google Scholar]
  5. Brûlet P., McConnell H. M. Magnetic resonance spectra of membranes. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1451–1455. doi: 10.1073/pnas.72.4.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cronan J. E., Vagelos P. R. Metabolism and function of the membrane phospholipids of Escherichia coli. Biochim Biophys Acta. 1972 Feb 14;265(1):25–60. doi: 10.1016/0304-4157(72)90018-4. [DOI] [PubMed] [Google Scholar]
  7. Cullis P. R., De Kruyff B. 31P NMR studies of unsonicated aqueous dispersions of neutral and acidic phospholipids. Effects of phase transitions, p2H and divalent cations on the motion in the phosphate region of the polar headgroup. Biochim Biophys Acta. 1976 Jul 1;436(3):523–540. doi: 10.1016/0005-2736(76)90438-7. [DOI] [PubMed] [Google Scholar]
  8. Feigenson G. W., Chan S. I. Nuclear magnetic relaxation behavior of lecithin multilayers. J Am Chem Soc. 1974 Mar 6;96(5):1312–1319. doi: 10.1021/ja00812a009. [DOI] [PubMed] [Google Scholar]
  9. Gent M. P., Armitage I. M., Prestegard J. H. 19F nuclear magnetic resonance studies of lipid bilayer systems. I. J Am Chem Soc. 1976 Jun 23;98(13):3749–3755. doi: 10.1021/ja00429a002. [DOI] [PubMed] [Google Scholar]
  10. Hubbell W. L., McConnell H. M. Molecular motion in spin-labeled phospholipids and membranes. J Am Chem Soc. 1971 Jan 27;93(2):314–326. doi: 10.1021/ja00731a005. [DOI] [PubMed] [Google Scholar]
  11. Keough K. M., Oldfield E., Chapman D. Carbon-13 and proton nuclear magnetic resonance of unsonicated model and mitochondrial membranes. Chem Phys Lipids. 1973 Jan;10(1):37–50. doi: 10.1016/0009-3084(73)90039-x. [DOI] [PubMed] [Google Scholar]
  12. Lee A. G., Birdsall N. J., Metcalfe J. C. Measurement of fast lateral diffusion of lipids in vesicles and in biological membranes by 1 H nuclear magnetic resonance. Biochemistry. 1973 Apr 10;12(8):1650–1659. doi: 10.1021/bi00732a029. [DOI] [PubMed] [Google Scholar]
  13. Lee A. G., Birdsall N. J., Metcalfe J. C., Warren G. B., Roberts G. C. A determination of the mobility gradient in lipid bilayers by 13C nuclear magnetic resonance. Proc R Soc Lond B Biol Sci. 1976 May 18;193(1112):253–274. doi: 10.1098/rspb.1976.0045. [DOI] [PubMed] [Google Scholar]
  14. Levine Y. K. Physical studies of membrane structure. Prog Biophys Mol Biol. 1972;24:1–74. doi: 10.1016/0079-6107(72)90003-x. [DOI] [PubMed] [Google Scholar]
  15. Longmuir K. J., Dahlquist F. W. Direct spectroscopic observation of inner and outer hydrocarbon chains of lipid bilayer vesicles. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2716–2719. doi: 10.1073/pnas.73.8.2716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Neiderberger W., Seelig J. Phosphorus-31 chemical shift anisotropy in unsonicated phospholipid bilayers. J Am Chem Soc. 1976 Jun 9;98(12):3704–3706. doi: 10.1021/ja00428a053. [DOI] [PubMed] [Google Scholar]
  17. Oldfield E., Chapman D., Derbyshire W. Lipid mobility in Acholeplasma membranes using deuteron magnetic resonance. Chem Phys Lipids. 1972 Jul;9(1):69–81. doi: 10.1016/0009-3084(72)90034-5. [DOI] [PubMed] [Google Scholar]
  18. SINGLETON W. S., GRAY M. S., BROWN M. L., WHITE J. L. CHROMATOGRAPHICALLY HOMOGENEOUS LECITHIN FROM EGG PHOSPHOLIPIDS. J Am Oil Chem Soc. 1965 Jan;42:53–56. doi: 10.1007/BF02558256. [DOI] [PubMed] [Google Scholar]
  19. Sears B. 13C nuclear magnetic resonance studies of egg phosphatidylcholine. J Membr Biol. 1975;20(1-2):59–73. doi: 10.1007/BF01870628. [DOI] [PubMed] [Google Scholar]
  20. Sheetz M. P., Chan S. I. Proton magnetic resonance studies of whole human erythrocyte membranes. Biochemistry. 1972 Feb 15;11(4):548–555. doi: 10.1021/bi00754a011. [DOI] [PubMed] [Google Scholar]
  21. Silbert D. F., Ladenson R. C., Honegger J. L. The unsaturated fatty acid requirement in Escherichia coli. Temperature dependence and total replacement by branched-chain fatty acids. Biochim Biophys Acta. 1973 Jul 6;311(3):349–361. doi: 10.1016/0005-2736(73)90315-5. [DOI] [PubMed] [Google Scholar]
  22. Silbert D. F., Ulbright T. M., Honegger J. L. Utilization of exogenous fatty acids for complex lipid biosynthesis and its effect on de novo fatty acid formation in Escherichia coli K-12. Biochemistry. 1973 Jan 2;12(1):164–171. doi: 10.1021/bi00725a027. [DOI] [PubMed] [Google Scholar]
  23. Stockton G. W., Polnaszek C. F., Tulloch A. P., Hasan F., Smith I. C. Molecular motion and order in single-bilayer vesicles and multilamellar dispersions of egg lecithin and lecithin-cholesterol mixtures. A deuterium nuclear magnetic resonance study of specifically labeled lipids. Biochemistry. 1976 Mar 9;15(5):954–966. doi: 10.1021/bi00650a003. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES