Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Feb;75(2):635–639. doi: 10.1073/pnas.75.2.635

Identification of precursor molecules to individual tRNA species from Bombyx mori.

R L Garber, M A Siddiqui, S Altman
PMCID: PMC411310  PMID: 273226

Abstract

Short-labeled 4.5S RNA molecules isolated from the posterior silk gland of Bombyx mori can be separated by two-dimensional polyacrylamide gel electrophoresis into many discrete species, some of which are radiochemically pure by the criteria of RNA fingerprinting. One region of the gel contains two precursor RNAs, one to each of the known alanine transfer RNAs. Each precursor tRNAAla molecule contains all of the internal oligonucleotides present in the corresponding tRNAAla species plus new 5'-and 3'-terminal sequences. Precursor molecules to tRNA1Gly (which differ from each other in size) are contained in two other gel regions, and a fourth region contains a precursor to tRNA2Gly. Both of the transcription initiator purine tetraphosphate nucleosides are present in unfractionated tRNA precursor mixtures, with pppA- predominating over pppG-. Minor nucleotides are also present in B. mori tRNA precursors. No polycistronic tRNA gene transcripts were observed.

Full text

PDF
635

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman S. Biosynthesis of transfer RNA in Escherichia coli. Cell. 1975 Jan;4(1):21–29. doi: 10.1016/0092-8674(75)90129-4. [DOI] [PubMed] [Google Scholar]
  2. Brownlee G. G., Sanger F., Barrell B. G. The sequence of 5 s ribosomal ribonucleic acid. J Mol Biol. 1968 Jun 28;34(3):379–412. doi: 10.1016/0022-2836(68)90168-x. [DOI] [PubMed] [Google Scholar]
  3. Burdon R. H., Martin B. T., Lal B. M. Synthesis of low molecular weight ribonucleic acid in tumour cells. J Mol Biol. 1967 Sep 14;28(2):357–371. doi: 10.1016/s0022-2836(67)80015-9. [DOI] [PubMed] [Google Scholar]
  4. Chen G. S., Siddiqui M. A. Biosynthesis of transfer RNA: isolation and characterization of precursors to transfer RNA in the posterior silkgland of Bombyx mori. J Mol Biol. 1975 Jul 25;96(1):153–170. doi: 10.1016/0022-2836(75)90188-6. [DOI] [PubMed] [Google Scholar]
  5. Contreras R., Küpper H., Landy A., Khorana H. G. Escherichia coli tyrosine transfer ribonucleic acid genes. Nucleotide sequences of their promoters and of the regions adjoining C-C-A ends. J Biol Chem. 1976 Sep 10;251(17):5124–5140. [PubMed] [Google Scholar]
  6. Eliceiri G. L., Sayavedra M. S. Small RNAs in the nucleus and cytoplasm of HeLa cells. Biochem Biophys Res Commun. 1976 Sep 20;72(2):507–512. doi: 10.1016/s0006-291x(76)80070-8. [DOI] [PubMed] [Google Scholar]
  7. Fournier A., Chavancy G., Garel J. P. Turnover of transfer RNA species during development of the posterior silkgland of Bombyx mori L. Biochem Biophys Res Commun. 1976 Oct 4;72(3):1187–1194. doi: 10.1016/s0006-291x(76)80256-2. [DOI] [PubMed] [Google Scholar]
  8. Fradin A., Gruhl H., Feldmann H. Mapping of yeast tRNAs by two-dimensional electrophoresis on polyacrylamide gels. FEBS Lett. 1975 Feb 1;50(2):185–189. doi: 10.1016/0014-5793(75)80485-6. [DOI] [PubMed] [Google Scholar]
  9. Frederiksen S., Hellung-Larsen P. Precursors to small molecular weight RNA components. FEBS Lett. 1975 Oct 15;58(1):374–378. doi: 10.1016/0014-5793(75)80301-2. [DOI] [PubMed] [Google Scholar]
  10. Garel J. P., Garber R. L., Siddiqui M. A. Transfer RNA in posterior silk gland of Bombyx mori: polyacrylamide gel mapping of mature transfer RNA, identification and partial structural characterization of major isoacceptor species. Biochemistry. 1977 Aug 9;16(16):3618–3624. doi: 10.1021/bi00635a018. [DOI] [PubMed] [Google Scholar]
  11. Garel J. P., Mandel P., Chavancy G., Daillie J. Functional adaptation of tRNAs to fibroin biosynthesis in the silkgland of Bombyx mori L. FEBS Lett. 1970 May 1;7(4):327–329. doi: 10.1016/0014-5793(70)80196-x. [DOI] [PubMed] [Google Scholar]
  12. Konrad M., Toivonen J., Nierlich D. P. Initial nucleotide frequencies of bacterial RNA synthesized during amino-acid starvation or changes of carbon source. Nat New Biol. 1972 Aug 23;238(86):231–233. doi: 10.1038/newbio238231a0. [DOI] [PubMed] [Google Scholar]
  13. Marzluff W. F., Jr, Murphy E. C., Jr, Huang R. C. Transcription of the genes for 5S ribosomal RNA and transfer RNA in isolated mouse myeloma cell nuclei. Biochemistry. 1974 Aug 27;13(18):3689–3696. doi: 10.1021/bi00715a011. [DOI] [PubMed] [Google Scholar]
  14. Nishimura S. Minor components in transfer RNA: their characterization, location, and function. Prog Nucleic Acid Res Mol Biol. 1972;12:49–85. [PubMed] [Google Scholar]
  15. Peacock A. C., Dingman C. W. Resolution of multiple ribonucleic acid species by polyacrylamide gel electrophoresis. Biochemistry. 1967 Jun;6(6):1818–1827. doi: 10.1021/bi00858a033. [DOI] [PubMed] [Google Scholar]
  16. Perry R. P., Kelley D. E. Persistent synthesis of 5S RNA when production of 28S and 18S ribosomal RNA is inhibited by low doses of actinomycin D. J Cell Physiol. 1968 Dec;72(3):235–246. doi: 10.1002/jcp.1040720311. [DOI] [PubMed] [Google Scholar]
  17. Platt T., Yanofsky C. An intercistronic region and ribosome-binding site in bacterial messenger RNA. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2399–2403. doi: 10.1073/pnas.72.6.2399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rose J. K., Knipe D. Nucleotide sequence complexities, molecular weights, and poly(A) content of the vesicular stomatitis virus mRNA species. J Virol. 1975 Apr;15(4):994–1003. doi: 10.1128/jvi.15.4.994-1003.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sanger F., Brownlee G. G., Barrell B. G. A two-dimensional fractionation procedure for radioactive nucleotides. J Mol Biol. 1965 Sep;13(2):373–398. doi: 10.1016/s0022-2836(65)80104-8. [DOI] [PubMed] [Google Scholar]
  20. Sirlin J. L., Loening U. E. Nucleolar 4s ribonucleic acid in dipteran salivary glands in the presence of inhibitor. Biochem J. 1968 Sep;109(3):375–387. doi: 10.1042/bj1090375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Smillie E. J., Burdon R. H. Enzymic conversion of tRNA precursor to 4-S RNA in vitro. Biochim Biophys Acta. 1970 Jul 16;213(1):248–250. doi: 10.1016/0005-2787(70)90031-6. [DOI] [PubMed] [Google Scholar]
  22. Smith J. D. Transcription and processing of transfer RNA precursors. Prog Nucleic Acid Res Mol Biol. 1976;16:25–73. doi: 10.1016/s0079-6603(08)60755-2. [DOI] [PubMed] [Google Scholar]
  23. Southern E. M. An improved method for transferring nucleotides from electrophoresis strips to thin layers of ion-exchange cellulose. Anal Biochem. 1974 Nov;62(1):317–318. doi: 10.1016/0003-2697(74)90395-9. [DOI] [PubMed] [Google Scholar]
  24. Sprague K. U., Hagenbüchle O., Zuniga M. C. The nucleotide sequence of two silk gland alanine tRNAs: implications for fibroin synthesis and for initiator tRNA structure. Cell. 1977 Jul;11(3):561–570. doi: 10.1016/0092-8674(77)90074-5. [DOI] [PubMed] [Google Scholar]
  25. Tsutsumi K., Majima R., Shimura K. Conversion of transfer ribonucleic acid precursors to 4 S RNA by enzymes from Bombyx mori. J Biochem. 1974 Nov;76(5):1143–1145. [PubMed] [Google Scholar]
  26. Tsutsumi K., Majima R., Shimura K. The biosynthesis of transfer RNA in insects. II. Isolation of transfer RNA precursors from the posterior silk gland of Bombyx mori. J Biochem. 1976 Nov;80(5):1039–1045. doi: 10.1093/oxfordjournals.jbchem.a131359. [DOI] [PubMed] [Google Scholar]
  27. Volckaert G., Jou W. M., Fiers W. Analysis of 32P-labeled bacteriophage MS2 RNA by a mini-fingerprinting procedure. Anal Biochem. 1976 May 7;72:433–446. doi: 10.1016/0003-2697(76)90551-0. [DOI] [PubMed] [Google Scholar]
  28. Vögeli G., Stewart T. S., McCutchan T., Söll D. Isolation of Escherichia coli precursor tRNAs containing modified nucleoside Q. J Biol Chem. 1977 Apr 10;252(7):2311–2318. [PubMed] [Google Scholar]
  29. Zieve G., Penman S. Small RNA species of the HeLa cell: metabolism and subcellular localization. Cell. 1976 May;8(1):19–31. doi: 10.1016/0092-8674(76)90181-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES