Abstract
The concentrations of nicotinic drugs required to effect a 50% transfer of triphosphol[3H]isositide from an aqueous phase to a nonaqueous phase closely approximated their concentrations for both in vivo neuromuscular blocking activity and binding to purified nicotinic receptors, and correlated well (correlation coefficient = 0.95)) with their biological activities measured by other workers in an Electrophorus electroplax preparation. The triphospho[3H]inositide transfer induced by nicotinic ligands was dependent on the lipid concentration and was potentiated by Ca2+. The affinity constants of 45Ca2+ for triphosphoinositide were similar to those for the purified nicotinic receptor. These and other findings suggest the possibility that triphosphoinositide (phosphatidylinositol bisphosphate) is a binding site of the nicotinic receptor.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- Burn J. H., Seltzer J. Substances blocking sympathetic post-ganglionic fibres and the neuromuscular junction. J Physiol. 1965 Aug;179(3):569–576. doi: 10.1113/jphysiol.1965.sp007681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang H. W., Neumann E. Dynamic properties of isolated acetylcholine receptor proteins: release of calcium ions caused by acetylcholine binding. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3364–3368. doi: 10.1073/pnas.73.10.3364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen J. B., Changeux J. P. The cholinergic receptor protein in its membrane environment. Annu Rev Pharmacol. 1975;15:83–103. doi: 10.1146/annurev.pa.15.040175.000503. [DOI] [PubMed] [Google Scholar]
- De Robertis E., Fiszer de Plazas S., De Carlin M. C. Letter: Similarities between "cholinergic proteolipid" and detergent-extracted cholinergic proteins. Nature. 1976 Feb 19;259(5544):605–606. doi: 10.1038/259605a0. [DOI] [PubMed] [Google Scholar]
- De Robertis E., Fiszer S., Pasquini J. M., Soto E. F. Isolation and chemical nature of the receptor for d-tubocurarine in nerve-ending membranes of the cerebral cortex. J Neurobiol. 1969;1(1):41–52. doi: 10.1002/neu.480010105. [DOI] [PubMed] [Google Scholar]
- Gonzalez-Sastre F., Folch-Pi J. Thin-layer chromatography of the phosphoinositides. J Lipid Res. 1968 Jul;9(4):532–533. [PubMed] [Google Scholar]
- Kometani T., Ikeda Y., Kasai M. Acetylcholine-binding substance extracted by using organic solvent and acetylcholine receptor of electric organ of Narke japonica. Biochim Biophys Acta. 1975 Dec 16;413(3):415–424. doi: 10.1016/0005-2736(75)90124-8. [DOI] [PubMed] [Google Scholar]
- Michell R. H., Hawthorne J. N., Coleman R., Karnovsky M. L. Extraction of polyphosphoinositides with neutral and acidified solvents. A comparison of guinea-pig brain and liver, and measurements of rat liver inositol compounds which are resistant to extraction. Biochim Biophys Acta. 1970 Jun 9;210(1):86–91. doi: 10.1016/0005-2760(70)90064-0. [DOI] [PubMed] [Google Scholar]
- Wu Y. C., Cho T. M., Loh H. H. Binding of dimethyltubocurarine to triphosphoinositide. J Neurochem. 1977 Sep;29(3):589–592. doi: 10.1111/j.1471-4159.1977.tb10708.x. [DOI] [PubMed] [Google Scholar]
- de Robertis E., de Plazas S. F. Acetylcholinesterase and acetylcholine proteolipid receptor: two different components of electroplax membranes. Biochim Biophys Acta. 1970 Dec 1;219(2):388–397. doi: 10.1016/0005-2736(70)90216-6. [DOI] [PubMed] [Google Scholar]
