Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Feb;75(2):794–798. doi: 10.1073/pnas.75.2.794

Repair of depurinated DNA in vitro by enzymes purified from human lymphoblasts.

K Bose, P Karran, B Strauss
PMCID: PMC411343  PMID: 273243

Abstract

Alkali-labile lesions introduced into T7 DNA by treatment with methyl methanesulfonate were removed and the DNA was repaired by incubation with DNA polymerase alpha and nuclease from a human lymphoblastoid line followed by the addition of DNA ligase. The nuclease preparation contains both apurinic endonuclease and 5'-3' exonuclease activities. Dinucleotides appear to be the first product of exonuclease action. Repair of methyl methanesulfonate-induced damage can occur by the insertion of only a few nucleotides per lesion as in vivo.

Full text

PDF
794

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chang L. M., Bollum F. J. Deoxynucleotide-polymerizing enzymes of calf thymus gland. V. Homogeneous terminal deoxynucleotidyl transferase. J Biol Chem. 1971 Feb 25;246(4):909–916. [PubMed] [Google Scholar]
  2. DAVISON P. F., FREIFELDER D. The physical properties of T7 bacteriophage. J Mol Biol. 1962 Dec;5:635–642. doi: 10.1016/s0022-2836(62)80091-6. [DOI] [PubMed] [Google Scholar]
  3. Duncan J., Hamilton L., Friedberg E. C. Enzymatic degradation of uracil-containing DNA. II. Evidence for N-glycosidase and nuclease activities in unfractionated extracts of Bacillus subtilis. J Virol. 1976 Aug;19(2):338–345. doi: 10.1128/jvi.19.2.338-345.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hayward G. S. Unique double-stranded fragments of bacteriophage T5 DNA resulting from preferential shear-induced breakage at nicks. Proc Natl Acad Sci U S A. 1974 May;71(5):2108–2112. doi: 10.1073/pnas.71.5.2108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Karran P., Higgins N. P., Strauss B. Intermediates in excision repair by human cells: use of S1 nuclease and benzoylated naphthoylated cellulose to reveal single-strand breaks. Biochemistry. 1977 Oct 4;16(20):4483–4490. doi: 10.1021/bi00639a024. [DOI] [PubMed] [Google Scholar]
  6. Kirtikar D. M., Cathcart G. R., Goldthwait D. A. Endonuclease II, apurinic acid endonuclease, and exonuclease III. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4324–4328. doi: 10.1073/pnas.73.12.4324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kleid D. G., Agarwal K. L., Khorana H. G. The nucleotide sequence in the promoter region of the gene N in bacteriophage lambda. J Biol Chem. 1975 Jul 25;250(14):5574–5582. [PubMed] [Google Scholar]
  8. Lehman I. R., Uyemura D. G. DNA polymerase I: essential replication enzyme. Science. 1976 Sep 10;193(4257):963–969. doi: 10.1126/science.781842. [DOI] [PubMed] [Google Scholar]
  9. Lindahl T., Andersson A. Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid. Biochemistry. 1972 Sep 12;11(19):3618–3623. doi: 10.1021/bi00769a019. [DOI] [PubMed] [Google Scholar]
  10. Lindahl T., Nyberg B. Rate of depurination of native deoxyribonucleic acid. Biochemistry. 1972 Sep 12;11(19):3610–3618. doi: 10.1021/bi00769a018. [DOI] [PubMed] [Google Scholar]
  11. Ljungquist S., Lindahl T. Relation between Escherichia coli endonucleases specific for apurinic sites in DNA and exonuclease III. Nucleic Acids Res. 1977 Aug;4(8):2871–2879. doi: 10.1093/nar/4.8.2871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Masker W. E. Deoxyribonucleic acid repair in vitro by extracts of Escherichia coli. J Bacteriol. 1977 Mar;129(3):1415–1423. doi: 10.1128/jb.129.3.1415-1423.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nilsson K., Pontén J. Classification and biological nature of established human hematopoietic cell lines. Int J Cancer. 1975 Feb 15;15(2):321–341. doi: 10.1002/ijc.2910150217. [DOI] [PubMed] [Google Scholar]
  14. Painter R. B., Young B. R. Repair replication in mammalian cells after x-irradiation. Mutat Res. 1972 Feb;14(2):225–235. doi: 10.1016/0027-5107(72)90049-8. [DOI] [PubMed] [Google Scholar]
  15. Panet A., van de Sande J. H., Loewen P. C., Khorana H. G., Raae A. J., Lillehaug J. R., Kleppe K. Physical characterization and simultaneous purification of bacteriophage T4 induced polynucleotide kinase, polynucleotide ligase, and deoxyribonucleic acid polymerase. Biochemistry. 1973 Dec 4;12(25):5045–5050. doi: 10.1021/bi00749a003. [DOI] [PubMed] [Google Scholar]
  16. Regan J. D., Setlow R. B. Two forms of repair in the DNA of human cells damaged by chemical carcinogens and mutagens. Cancer Res. 1974 Dec;34(12):3318–3325. [PubMed] [Google Scholar]
  17. STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
  18. Schaller H., Nüsslein C., Bonhoeffer F. J., Kurz C., Nietzschmann I. Affinity chromatography of DNA-binding enzymes on single-stranded DNA-agarose columns. Eur J Biochem. 1972 Apr 24;26(4):474–481. doi: 10.1111/j.1432-1033.1972.tb01789.x. [DOI] [PubMed] [Google Scholar]
  19. Scudiero D., Henderson E., Norin A., Strauss B. The measurement of chemically-induced DNA repair synthesis in human cells by BND-cellulose chromatography. Mutat Res. 1975 Sep;29(3):473–488. doi: 10.1016/0027-5107(75)90066-4. [DOI] [PubMed] [Google Scholar]
  20. Scudiero D., Norin A., Karran P., Strauss B. DNA excision-repair deficiency of human peripheral blood lymphocytes treated with chemical carcinogens. Cancer Res. 1976 Apr;36(4):1397–1403. [PubMed] [Google Scholar]
  21. Setlow P., Kornberg A. Deoxyribonucleic acid polymerase: two distinct enzymes in one polypeptide. II. A proteolytic fragment containing the 5' leads to 3' exonuclease function. Restoration of intact enzyme functions from the two proteolytic fragments. J Biol Chem. 1972 Jan 10;247(1):232–240. [PubMed] [Google Scholar]
  22. Sharp P. A., Sugden B., Sambrook J. Detection of two restriction endonuclease activities in Haemophilus parainfluenzae using analytical agarose--ethidium bromide electrophoresis. Biochemistry. 1973 Jul 31;12(16):3055–3063. doi: 10.1021/bi00740a018. [DOI] [PubMed] [Google Scholar]
  23. Stafford D. W., Bieber D. Concentration of DNA solutions by extraction with 2-butanol. Biochim Biophys Acta. 1975 Jan 6;378(1):18–21. doi: 10.1016/0005-2787(75)90132-x. [DOI] [PubMed] [Google Scholar]
  24. Staudenbauer W. L. Replication of small plasmids in extracts of Escherichia coli. Mol Gen Genet. 1976 Jun 15;145(3):273–280. doi: 10.1007/BF00325823. [DOI] [PubMed] [Google Scholar]
  25. Strauss B. S., Robbins M. DNA methylated in vitro by a monofunctional alkylating agent as a substrate for a specific nuclease from Micrococcus lysodeikticus. Biochim Biophys Acta. 1968 Jun 18;161(1):68–75. doi: 10.1016/0005-2787(68)90295-5. [DOI] [PubMed] [Google Scholar]
  26. Strauss B., Hill T. The intermediate in the degradation of DNA alkylated with a monofunctional alkylating agent. Biochim Biophys Acta. 1970 Jul 16;213(1):14–25. doi: 10.1016/0005-2787(70)90003-1. [DOI] [PubMed] [Google Scholar]
  27. Verly W. G., Gossard F., Crine P. In vitro repair of apurinic sites in DNA. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2273–2275. doi: 10.1073/pnas.71.6.2273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Weiss B., Live T. R., Richardson C. C. Enzymatic breakage and joining of deoxyribonucleic acid. V. End group labeling and analysis of deoxyribonucleic acid containing single straned breaks. J Biol Chem. 1968 Sep 10;243(17):4530–4542. [PubMed] [Google Scholar]
  29. Weissbach A. Vertebrate DNA polymerases. Cell. 1975 Jun;5(2):101–108. doi: 10.1016/0092-8674(75)90017-3. [DOI] [PubMed] [Google Scholar]
  30. Yajko D. M., Weiss B. Mutations simultaneously affecting endonuclease II and exonuclease III in Escherichia coli. Proc Natl Acad Sci U S A. 1975 Feb;72(2):688–692. doi: 10.1073/pnas.72.2.688. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES