Abstract
Actin labeled with 5-iodoacetamidofluorescein has been incorporated into the functional pool of actin in Chaos carolinensis and Physarum polycephalum by direct microinjection. The functional activity of the labeled actin has been analyzed at three levels of organization as: (a) with the purified actin, (b) in motile extracts of cells, and (c) in living motile cells. The labeled actin exhibited normal polymerization and activated myosin ATPase to a similar extent as unlabeled controls. Labeled actin and endogenous actin were incorporated into contracted pellets to approximately the same extent in motile cell extracts. After labeled actin had been microinjected into single C. carolinensis cells, the fluorescent actin spread into both the endoplasm and etoplasm without forming distinct fibrils. In contrast, fluorescent bundles developed in the ectoplasm of P. polycephalum following microinjection of labeled actin. This experimental method in conjunction with fluorescence spectroscopic techniques could become a powerful tool for studying the intracellular distribution and structural changes of components in living cells.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen R. D. Pattern of birefringence in the giant amoeba, Chaos carolinensis. Exp Cell Res. 1972 May;72(1):34–45. doi: 10.1016/0014-4827(72)90564-2. [DOI] [PubMed] [Google Scholar]
- Aronson J. F. The use of fluorescein-labeled heavy meromyosin for the cytological demonstration of actin. J Cell Biol. 1965 Jul;26(1):293–298. doi: 10.1083/jcb.26.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buckley I. K., Porter K. R. Electron microscopy of critical point dried whole cultured cells. J Microsc. 1975 Jul;104(2):107–120. doi: 10.1111/j.1365-2818.1975.tb04010.x. [DOI] [PubMed] [Google Scholar]
- Chen R. F. Fluorescent protein-dye conjugates. II. Gamma globulin conjugated with various dyes. Arch Biochem Biophys. 1969 Sep;133(2):263–276. doi: 10.1016/0003-9861(69)90454-8. [DOI] [PubMed] [Google Scholar]
- Cheung H. C., Cooke R., Smith L. The G-actin is greater than F-actin transformation as studied by the fluorescence of bound dansyl cystine. Arch Biochem Biophys. 1971 Jan;142(1):333–339. doi: 10.1016/0003-9861(71)90291-8. [DOI] [PubMed] [Google Scholar]
- Condeelis J. S., Taylor D. L. The contractile basis of amoeboid movement. V. The control of gelation, solation, and contraction in extracts from Dictyostelium discoideum. J Cell Biol. 1977 Sep;74(3):901–927. doi: 10.1083/jcb.74.3.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernandez S. M., Berlin R. D. Cell surface distribution of lectin receptors determined by resonance energy transfer. Nature. 1976 Dec 2;264(5585):411–415. doi: 10.1038/264411a0. [DOI] [PubMed] [Google Scholar]
- Goldman R. D. The use of heavy meromyosin binding as an ultrastructural cytochemical method for localizing and determining the possible functions of actin-like microfilaments in nonmuscle cells. J Histochem Cytochem. 1975 Jul;23(7):529–542. doi: 10.1177/23.7.1095652. [DOI] [PubMed] [Google Scholar]
- Goldman R. D., Yerna M. J., Schloss J. A. Localization and organization of microfilaments and related proteins in normal and virus-transformed cells. J Supramol Struct. 1976;5(2):155–183. doi: 10.1002/jss.400050206. [DOI] [PubMed] [Google Scholar]
- Ishikawa H., Bischoff R., Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969 Nov;43(2):312–328. [PMC free article] [PubMed] [Google Scholar]
- Kawasaki Y., Mihashi K., Tanaka H., Ohnuma H. Fluorescence study of N-(3-pyrene)maleimide conjugated to rabbit skeletal F-actin and plasmodium actin polymers. Biochim Biophys Acta. 1976 Sep 28;446(1):166–178. doi: 10.1016/0005-2795(76)90108-2. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lazarides E., Weber K. Actin antibody: the specific visualization of actin filaments in non-muscle cells. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2268–2272. doi: 10.1073/pnas.71.6.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loomis W. F., Jr Sensitivity of Dictyostelium discoideum to nucleic acid analogues. Exp Cell Res. 1971 Feb;64(2):484–486. doi: 10.1016/0014-4827(71)90107-8. [DOI] [PubMed] [Google Scholar]
- NAKAJIMA H., ALLEN R. D. THE CHANGING PATTERN OF BIREFRINGENCE IN PLASMODIA OF THE SLIME MOLD, PHYSARUM POLYCEPHALUM. J Cell Biol. 1965 May;25:361–374. doi: 10.1083/jcb.25.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nihei T., Mendelson R. A., Botts J. Use of fluorescence polarization to observe changes in attitude of S-1 moieties in muscle fibers. Biophys J. 1974 Mar;14(3):236–242. doi: 10.1016/S0006-3495(74)85911-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oyashiki T., Sekine T., Kanaoka Y. Studies on calcium ion-induced conformation changes in the actin-tropomyosin-troponin system by fluorimetry. II. Effect of tropomyosin, troponin and calcium ion on conformation of anilinonaphthylmaleimide-labeled f-actin. Biochim Biophys Acta. 1974 Jun 7;351(2):214–223. doi: 10.1016/0005-2795(74)90183-4. [DOI] [PubMed] [Google Scholar]
- Pollard T. D., Korn E. D. Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J Biol Chem. 1973 Jul 10;248(13):4682–4690. [PubMed] [Google Scholar]
- Sanger J. W. Changing patterns of actin localization during cell division. Proc Natl Acad Sci U S A. 1975 May;72(5):1913–1916. doi: 10.1073/pnas.72.5.1913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sekine T., Ohyashiki T., Machida M., Kanaoka Y. Studies on calcium ion-induced conformation changes in the actin-tropomyosin-troponin system by fluorimetry. I. Conformation changes around the fluorescence-labeled sulfhydryl group of actin. Biochim Biophys Acta. 1974 Jun 7;351(2):205–213. doi: 10.1016/0005-2795(74)90182-2. [DOI] [PubMed] [Google Scholar]
- Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
- Taylor D. L., Condeelis J. S., Moore P. L., Allen R. D. The contractile basis of amoeboid movement. I. The chemical control of motility in isolated cytoplasm. J Cell Biol. 1973 Nov;59(2 Pt 1):378–394. doi: 10.1083/jcb.59.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor D. L., Rhodes J. A., Hammond S. A. The contractile basis of ameboid movement. II. Structure and contractility of motile extracts and plasmalemma-ectoplasm ghosts. J Cell Biol. 1976 Jul;70(1):123–143. doi: 10.1083/jcb.70.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor D. L. The contractile basis of amoeboid movement. IV. The viscoelasticity and contractility of amoeba cytoplasm in vivo. Exp Cell Res. 1977 Mar 15;105(2):413–426. doi: 10.1016/0014-4827(77)90138-0. [DOI] [PubMed] [Google Scholar]