Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Feb;75(2):866–870. doi: 10.1073/pnas.75.2.866

Correlation between phosphorylated H1 histones and satellite DNAs in Drosophila virilis.

M Blumenfeld, J W Orf, B J Sina, R A Kreber, M A Callahan, J I Mullins, L A Snyder
PMCID: PMC411358  PMID: 273248

Abstract

Drosophila virilis DNA contains satellites I, II, and III. D. novamexicana DNA contains satellite I. D. virilis H1 histone contains subfractions a, b, c, d, and e; D. novamexicana H1 contains subfractions a, b, and c. Therefore, satellites II and III might be correlated with H1d and H1e. To test the validity of this correlation, the H1 histones of polytene nuclei, which contain less than 1% satellite DNA, were analyzed. Polytene nuclei of D. virilis contain substantially decreased levels of H1c and H1e and marginally decreased levels of H1d. Polytene nuclei of D. novamexicana contain decreased levels of H1c.H1c is correlated with satellite I (common to D. virilis and D. novamexicana); H1e is correlated with satellites II and III; H1d is not correlated with any satellite DNA, because its level is virtually unchanged in polytene cells lacking detectable amounts of satellite DNA. Alkaline phosphatase digestion of the H1 histones reveals that H1c is the phosphorylated form of H1b and H1e is the phosphorylated form of H1d. Therefore, the under-replication of satellite DNAs is correlated with the decreased phosphorylation of H1 histones. In vitro, D. virilis H1 histones preferentially bind D. virilis DNAs in the progression III greater than II greater than I greater than main band, whereas D. virilis core histones do not preferentially bind any D. virilis DNA. As an extension of these results, we suggest that phosphorylated H1 histones bind D. virilis satellite DNAs in vivo and are involved in the compaction of heterochromatin.

Full text

PDF
866

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adkisson K. P., Perreault W. J., Gay H. Differential fluorescent staining of Drosophila chromosomes with quinacrine mustard. Chromosoma. 1971;34(2):190–205. doi: 10.1007/BF00285186. [DOI] [PubMed] [Google Scholar]
  2. Alfageme C. R., Rudkin G. T., Cohen L. H. Locations of chromosomal proteins in polytene chromosomes. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2038–2042. doi: 10.1073/pnas.73.6.2038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alfageme C. R., Zweidler A., Mahowald A., Cohen L. H. Histones of Drosophila embryos. Electrophoretic isolation and structural studies. J Biol Chem. 1974 Jun 25;249(12):3729–3736. [PubMed] [Google Scholar]
  4. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blumenfeld M., Forrest H. S. Differential under-replication of satellite DNAs during Drosophila development. Nat New Biol. 1972 Oct 11;239(93):170–172. doi: 10.1038/newbio239170a0. [DOI] [PubMed] [Google Scholar]
  6. Blumenfeld M., Fox A. S., Forrest H. S. A family of three related satellite DNAs in Drosophila virilis. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2772–2775. doi: 10.1073/pnas.70.10.2772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blumenfeld M. The evolution of satellite DNA in Drosophila virilis. Cold Spring Harb Symp Quant Biol. 1974;38:423–427. doi: 10.1101/sqb.1974.038.01.045. [DOI] [PubMed] [Google Scholar]
  8. Blumenfled M., Forrest H. S. Is Drosophila dAT on the Y chromosome? Proc Natl Acad Sci U S A. 1971 Dec;68(12):3145–3149. doi: 10.1073/pnas.68.12.3145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cohen L. H., Gotchel B. V. Histones of polytene and nonpolytene nuclei of Drosophila melanogaster. J Biol Chem. 1971 Mar 25;246(6):1841–1848. [PubMed] [Google Scholar]
  10. Elgin S. C., Weintraub H. Chromosomal proteins and chromatin structure. Annu Rev Biochem. 1975;44:725–774. doi: 10.1146/annurev.bi.44.070175.003453. [DOI] [PubMed] [Google Scholar]
  11. Ellison J. R., Barr H. J. Quinacrine fluorescence of specific chromosome regions. Late replication and high A: T content in Samoaia leonensis. Chromosoma. 1972;36(4):375–390. doi: 10.1007/BF00336794. [DOI] [PubMed] [Google Scholar]
  12. Gall J. G., Atherton D. D. Satellite DNA sequences in Drosophila virilis. J Mol Biol. 1974 Jan 5;85(4):633–664. doi: 10.1016/0022-2836(74)90321-0. [DOI] [PubMed] [Google Scholar]
  13. Gall J. G., Cohen E. H., Polan M. L. Reptitive DNA sequences in drosophila. Chromosoma. 1971;33(3):319–344. doi: 10.1007/BF00284948. [DOI] [PubMed] [Google Scholar]
  14. Gottesfeld J. M., Murphy R. F., Bonner J. Structure of transcriptionally active chromatin. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4404–4408. doi: 10.1073/pnas.72.11.4404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Holmquist G. Organisation and evolution of Drosophila virilis heterochromatin. Nature. 1975 Oct 9;257(5526):503–506. doi: 10.1038/257503a0. [DOI] [PubMed] [Google Scholar]
  16. Kornberg R. D. Chromatin structure: a repeating unit of histones and DNA. Science. 1974 May 24;184(4139):868–871. doi: 10.1126/science.184.4139.868. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Lacy E., Axel R. Analysis of DNA of isolated chromatin subunits. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3978–3982. doi: 10.1073/pnas.72.10.3978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Polisky B., McCarthy B. Location of histones on simian virus 40 DNA. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2895–2899. doi: 10.1073/pnas.72.8.2895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Renz M., Day L. A. Transition from noncooperative to cooperative and selective binding of histone H1 to DNA. Biochemistry. 1976 Jul 27;15(15):3220–3228. doi: 10.1021/bi00660a010. [DOI] [PubMed] [Google Scholar]
  21. Sherod D., Johnson G., Chalkley R. Phosphorylation of mouse ascites tumor cell lysine-rich histone. Biochemistry. 1970 Nov 10;9(23):4611–4615. doi: 10.1021/bi00825a022. [DOI] [PubMed] [Google Scholar]
  22. Yunis J. J., Yasmineh W. G. Heterochromatin, satellite DNA, and cell function. Structural DNA of eucaryotes may support and protect genes and aid in speciation. Science. 1971 Dec 17;174(4015):1200–1209. doi: 10.1126/science.174.4015.1200. [DOI] [PubMed] [Google Scholar]
  23. de Pomerai D. I., Chesterton C. J., Butterworth P. H. Preparation of chromatin. Variation in the template properties of chromatin dependent on the method of perparation. Eur J Biochem. 1974 Aug 1;46(3):461–471. doi: 10.1111/j.1432-1033.1974.tb03639.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES