Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Aug 29;92(18):8274–8278. doi: 10.1073/pnas.92.18.8274

Retrograde axonal transport of glial cell line-derived neurotrophic factor in the adult nigrostriatal system suggests a trophic role in the adult.

A Tomac 1, J Widenfalk 1, L F Lin 1, T Kohno 1, T Ebendal 1, B J Hoffer 1, L Olson 1
PMCID: PMC41139  PMID: 7667281

Abstract

The recently cloned, distant member of the transforming growth factor beta (TGF-beta) family, glial cell line-derived neurotrophic factor (GDNF), has potent trophic actions on fetal mesencephalic dopamine neurons. GDNF also has protective and restorative activity on adult mesencephalic dopaminergic neurons and potently protects motoneurons from axotomy-induced cell death. However, evidence for a role for endogenous GDNF as a target-derived trophic factor in adult midbrain dopaminergic circuits requires documentation of specific transport from the sites of synthesis in the target areas to the nerve cell bodies themselves. Here, we demonstrate that GDNF is retrogradely transported by mesencephalic dopamine neurons of the nigrostriatal pathway. The pattern of retrograde transport following intrastriatal injections indicates that there may be subpopulations of neurons that are GDNF responsive. Retrograde axonal transport of biologically active 125I-labeled GDNF was inhibited by an excess of unlabeled GDNF but not by an excess of cytochrome c. Specificity was further documented by demonstrating that another TGF-beta family member, TGF-beta 1, did not appear to affect retrograde transport. Retrograde transport was also demonstrated by immunohistochemistry by using intrastriatal injections of unlabeled GDNF. GDNF immunoreactivity was found specifically in dopamine nerve cell bodies of the substantia nigra pars compacta distributed in granules in the soma and proximal dendrites. Our data implicate a specific receptor-mediated uptake mechanism operating in the adult. Taken together, the present findings suggest that GDNF acts endogenously as a target-derived physiological survival/maintenance factor for dopaminergic neurons.

Full text

PDF
8274

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beck K. D., Valverde J., Alexi T., Poulsen K., Moffat B., Vandlen R. A., Rosenthal A., Hefti F. Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature. 1995 Jan 26;373(6512):339–341. doi: 10.1038/373339a0. [DOI] [PubMed] [Google Scholar]
  2. Ebendal T., Tomac A., Hoffer B. J., Olson L. Glial cell line-derived neurotrophic factor stimulates fiber formation and survival in cultured neurons from peripheral autonomic ganglia. J Neurosci Res. 1995 Feb 1;40(2):276–284. doi: 10.1002/jnr.490400217. [DOI] [PubMed] [Google Scholar]
  3. Gerfen C. R., Baimbridge K. G., Miller J. J. The neostriatal mosaic: compartmental distribution of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8780–8784. doi: 10.1073/pnas.82.24.8780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Graybiel A. M. Compartmental organization of the mammalian striatum. Prog Brain Res. 1983;58:247–256. doi: 10.1016/S0079-6123(08)60026-6. [DOI] [PubMed] [Google Scholar]
  5. Graybiel A. M. Correspondence between the dopamine islands and striosomes of the mammalian striatum. Neuroscience. 1984 Dec;13(4):1157–1187. doi: 10.1016/0306-4522(84)90293-8. [DOI] [PubMed] [Google Scholar]
  6. Graybiel A. M., Pickel V. M., Joh T. H., Reis D. J., Ragsdale C. W., Jr Direct demonstration of a correspondence between the dopamine islands and acetylcholinesterase patches in the developing striatum. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5871–5875. doi: 10.1073/pnas.78.9.5871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Henderson C. E., Phillips H. S., Pollock R. A., Davies A. M., Lemeulle C., Armanini M., Simmons L., Moffet B., Vandlen R. A., Simpson LC corrected to Simmons L. GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science. 1994 Nov 11;266(5187):1062–1064. doi: 10.1126/science.7973664. [DOI] [PubMed] [Google Scholar]
  8. Hoffer B. J., Hoffman A., Bowenkamp K., Huettl P., Hudson J., Martin D., Lin L. F., Gerhardt G. A. Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo. Neurosci Lett. 1994 Nov 21;182(1):107–111. doi: 10.1016/0304-3940(94)90218-6. [DOI] [PubMed] [Google Scholar]
  9. Hudson J., Granholm A. C., Gerhardt G. A., Henry M. A., Hoffman A., Biddle P., Leela N. S., Mackerlova L., Lile J. D., Collins F. Glial cell line-derived neurotrophic factor augments midbrain dopaminergic circuits in vivo. Brain Res Bull. 1995;36(5):425–432. doi: 10.1016/0361-9230(94)00224-o. [DOI] [PubMed] [Google Scholar]
  10. Humpel C., Hoffer B., Strömberg I., Bektesh S., Collins F., Olson L. Neurons of the hippocampal formation express glial cell line-derived neurotrophic factor messenger RNA in response to kainate-induced excitation. Neuroscience. 1994 Apr;59(4):791–795. doi: 10.1016/0306-4522(94)90284-4. [DOI] [PubMed] [Google Scholar]
  11. Jimenez-Castellanos J., Graybiel A. M. Subdivisions of the dopamine-containing A8-A9-A10 complex identified by their differential mesostriatal innervation of striosomes and extrastriosomal matrix. Neuroscience. 1987 Oct;23(1):223–242. doi: 10.1016/0306-4522(87)90285-5. [DOI] [PubMed] [Google Scholar]
  12. Kearns C. M., Gash D. M. GDNF protects nigral dopamine neurons against 6-hydroxydopamine in vivo. Brain Res. 1995 Feb 20;672(1-2):104–111. doi: 10.1016/0006-8993(94)01366-p. [DOI] [PubMed] [Google Scholar]
  13. Lin L. F., Doherty D. H., Lile J. D., Bektesh S., Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science. 1993 May 21;260(5111):1130–1132. doi: 10.1126/science.8493557. [DOI] [PubMed] [Google Scholar]
  14. Olson L., Backlund E. O., Ebendal T., Freedman R., Hamberger B., Hansson P., Hoffer B., Lindblom U., Meyerson B., Strömberg I. Intraputaminal infusion of nerve growth factor to support adrenal medullary autografts in Parkinson's disease. One-year follow-up of first clinical trial. Arch Neurol. 1991 Apr;48(4):373–381. doi: 10.1001/archneur.1991.00530160037011. [DOI] [PubMed] [Google Scholar]
  15. Olson L., Seiger A., Fuxe K. Heterogeneity of striatal and limbic dopamine innervation: highly fluorescent islands in developing and adult rats. Brain Res. 1972 Sep 15;44(1):283–288. doi: 10.1016/0006-8993(72)90385-x. [DOI] [PubMed] [Google Scholar]
  16. Oppenheim R. W., Houenou L. J., Johnson J. E., Lin L. F., Li L., Lo A. C., Newsome A. L., Prevette D. M., Wang S. Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF. Nature. 1995 Jan 26;373(6512):344–346. doi: 10.1038/373344a0. [DOI] [PubMed] [Google Scholar]
  17. Schaar D. G., Sieber B. A., Dreyfus C. F., Black I. B. Regional and cell-specific expression of GDNF in rat brain. Exp Neurol. 1993 Dec;124(2):368–371. doi: 10.1006/exnr.1993.1207. [DOI] [PubMed] [Google Scholar]
  18. Schmidt-Kastner R., Tomac A., Hoffer B., Bektesh S., Rosenzweig B., Olson L. Glial cell-line derived neurotrophic factor (GDNF) mRNA upregulation in striatum and cortical areas after pilocarpine-induced status epilepticus in rats. Brain Res Mol Brain Res. 1994 Oct;26(1-2):325–330. doi: 10.1016/0169-328x(94)90106-6. [DOI] [PubMed] [Google Scholar]
  19. Schoen S. W., Graybiel A. M. 5'-nucleotidase: a new marker for striosomal organization in the rat caudoputamen. J Comp Neurol. 1992 Aug 22;322(4):566–576. doi: 10.1002/cne.903220410. [DOI] [PubMed] [Google Scholar]
  20. Seiger A., Olson L. Late prenatal ontogeny of central monoamine neurons in the rat: Fluorescence histochemical observations. Z Anat Entwicklungsgesch. 1973 Aug 30;140(3):281–318. doi: 10.1007/BF00525058. [DOI] [PubMed] [Google Scholar]
  21. Springer J. E., Mu X., Bergmann L. W., Trojanowski J. Q. Expression of GDNF mRNA in rat and human nervous tissue. Exp Neurol. 1994 Jun;127(2):167–170. doi: 10.1006/exnr.1994.1091. [DOI] [PubMed] [Google Scholar]
  22. Strömberg I., Björklund L., Johansson M., Tomac A., Collins F., Olson L., Hoffer B., Humpel C. Glial cell line-derived neurotrophic factor is expressed in the developing but not adult striatum and stimulates developing dopamine neurons in vivo. Exp Neurol. 1993 Dec;124(2):401–412. doi: 10.1006/exnr.1993.1214. [DOI] [PubMed] [Google Scholar]
  23. Suter-Crazzolara C., Unsicker K. GDNF is expressed in two forms in many tissues outside the CNS. Neuroreport. 1994 Dec 20;5(18):2486–2488. doi: 10.1097/00001756-199412000-00020. [DOI] [PubMed] [Google Scholar]
  24. Tomac A., Lindqvist E., Lin L. F., Ogren S. O., Young D., Hoffer B. J., Olson L. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature. 1995 Jan 26;373(6512):335–339. doi: 10.1038/373335a0. [DOI] [PubMed] [Google Scholar]
  25. Wetmore C., Cao Y. H., Pettersson R. F., Olson L. Brain-derived neurotrophic factor: subcellular compartmentalization and interneuronal transfer as visualized with anti-peptide antibodies. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9843–9847. doi: 10.1073/pnas.88.21.9843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yan Q., Matheson C., Lopez O. T. In vivo neurotrophic effects of GDNF on neonatal and adult facial motor neurons. Nature. 1995 Jan 26;373(6512):341–344. doi: 10.1038/373341a0. [DOI] [PubMed] [Google Scholar]
  27. Zurn A. D., Baetge E. E., Hammang J. P., Tan S. A., Aebischer P. Glial cell line-derived neurotrophic factor (GDNF), a new neurotrophic factor for motoneurones. Neuroreport. 1994 Dec 30;6(1):113–118. doi: 10.1097/00001756-199412300-00030. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES