Abstract
beta-Bungarotoxins have been shown to be presynaptic blockers of neuromuscular transmission. This paper reports experiments using the most positively charged beta-bungarotoxin that elutes from a CM-Sephadex C-25 column. The toxin is shown to be a single polypeptide with a molecular weight of approximately 11,000 and has phospholipase A2 activity. The application of the enzymatically active toxin to the frog sciatic nerve-sartorius muscle preparation results in an initial decrease in the average endplate potential amplitude followed by a temporary rebound in endplate potential amplitude, and finally a complete inhibition of endplate potentials. Similarly, minature endplate potential frequency is initially reduced upon toxin application but then increases dramatically. After the phospholipase A2 of the toxin is inactivated, treatment with the toxin results in only the initial decrease in transmitter release. There results suggest that this beta-bungarotoxin acts in two functionally separate steps: (i) by binding to a specific presynaptic site possibly associated with calcium entry, and (ii) by perturbing the presynaptic membrane by its enzyme action, which results in an increase and then a failure in transmitter release.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abe T., Alemá S., Miledi R. Phospholipase activity in beta-bungarotoxin action [proceedings]. J Physiol. 1977 Aug;270(1):55P–56P. [PubMed] [Google Scholar]
- Abe T., Limbrick A. R., Miledi R. Acute muscle denervation induced by beta-bungarotoxin. Proc R Soc Lond B Biol Sci. 1976 Nov 12;194(1117):545–553. doi: 10.1098/rspb.1976.0093. [DOI] [PubMed] [Google Scholar]
- CHANG C. C., LEE C. Y. ISOLATION OF NEUROTOXINS FROM THE VENOM OF BUNGARUS MULTICINCTUS AND THEIR MODES OF NEUROMUSCULAR BLOCKING ACTION. Arch Int Pharmacodyn Ther. 1963 Jul 1;144:241–257. [PubMed] [Google Scholar]
- Chang C. C., Chen T. F., Lee C. Y. Studies of the presynaptic effect of -bungarotoxin on neuromuscular transmission. J Pharmacol Exp Ther. 1973 Feb;184(2):339–345. [PubMed] [Google Scholar]
- Chang C. C., Lee J. D. Crotoxin, the neurotoxin of South American rattlesnake venom, is a presynaptic toxin acting like beta-bungarotoxin. Naunyn Schmiedebergs Arch Pharmacol. 1977 Jan;296(2):159–168. doi: 10.1007/BF00508469. [DOI] [PubMed] [Google Scholar]
- Chang C. C., Su M. J., Lee J. D., Eaker D. Effects of Sr2+ and Mg2+ on the phospholipase A and the presynaptic neuromuscular blocking actions of beta-bungarotoxin, crotoxin and taipoxin. Naunyn Schmiedebergs Arch Pharmacol. 1977 Sep;299(2):155–161. doi: 10.1007/BF00498557. [DOI] [PubMed] [Google Scholar]
- FATT P., GINSBORG B. L. The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol. 1958 Aug 6;142(3):516–543. doi: 10.1113/jphysiol.1958.sp006034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geel S. E., Gonzales L. K. In vitro studies of cerebral cortical RNA and nucleotide metabolism in hypothyroidism. J Neurochem. 1975 Oct;25(4):377–385. doi: 10.1111/j.1471-4159.1975.tb04331.x. [DOI] [PubMed] [Google Scholar]
- Kelly R. B., Brown F. R., 3rd Biochemical and physiological properties of a purified snake venom neurotoxin which acts presynaptically. J Neurobiol. 1974;5(2):135–150. doi: 10.1002/neu.480050205. [DOI] [PubMed] [Google Scholar]
- Lau Y. H., Chiu T. H., Caswell A. H., Potter Effects of beta-bungarotoxin on calcium uptake by sarcoplasmic reticulum from rabbit skeletal muscle. Biochem Biophys Res Commun. 1974 Nov 27;61(2):510–516. doi: 10.1016/0006-291x(74)90986-3. [DOI] [PubMed] [Google Scholar]
- Lee C. Y., Chang S. L., Kau S. T., Luh S. H. Chromatographic separation of the venom of Bungarus multicinctus and characterization of its components. J Chromatogr. 1972 Oct 5;72(1):71–82. doi: 10.1016/0021-9673(72)80009-8. [DOI] [PubMed] [Google Scholar]
- Lee C. Y. Chemistry and pharmacology of polypeptide toxins in snake venoms. Annu Rev Pharmacol. 1972;12:265–286. doi: 10.1146/annurev.pa.12.040172.001405. [DOI] [PubMed] [Google Scholar]
- Matthews G., Wickelgren W. O. On the effect of calcium on the frequency of miniature end-plate potentials at the frog neuromuscular junction. J Physiol. 1977 Mar;266(1):91–101. doi: 10.1113/jphysiol.1977.sp011757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Narahashi T. Chemicals as tools in the study of excitable membranes. Physiol Rev. 1974 Oct;54(4):813–889. doi: 10.1152/physrev.1974.54.4.813. [DOI] [PubMed] [Google Scholar]
- Oberg S. G., Kelly R. B. The mechanism of beta-bungarotoxin action. I. Modification of transmitter release at the neuromuscular junction. J Neurobiol. 1976 Mar;7(2):129–141. doi: 10.1002/neu.480070206. [DOI] [PubMed] [Google Scholar]
- Sen I., Grantham P. A., Cooper J. R. Mechanism of action of beta-bungarotoxin on synaptosomal preparations. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2664–2668. doi: 10.1073/pnas.73.8.2664. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strong P. N., Goerke J., Oberg S. G., Kelly R. B. beta-Bungarotoxin, a pre-synaptic toxin with enzymatic activity. Proc Natl Acad Sci U S A. 1976 Jan;73(1):178–182. doi: 10.1073/pnas.73.1.178. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vogel Z., Sytkowski A. J., Nirenberg M. W. Acetylcholine receptors of muscle grown in vitro. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3180–3184. doi: 10.1073/pnas.69.11.3180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagner G. M., Mart P. E., Kelly R. B. Beta-bungarotoxin inhibition of calcium accumulation by rat brain mitochondria. Biochem Biophys Res Commun. 1974 May 20;58(2):475–481. doi: 10.1016/0006-291x(74)90389-1. [DOI] [PubMed] [Google Scholar]
- Wernicke J. F., Oberjat T., Howard B. D. Beta-neurotoxin reduces neurotransmitter storage in brain synapses. J Neurochem. 1974 May;22(5):781–788. doi: 10.1111/j.1471-4159.1974.tb04295.x. [DOI] [PubMed] [Google Scholar]
