Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Mar;75(3):1172–1175. doi: 10.1073/pnas.75.3.1172

Flash photolysis of human serum albumin: characterization of the indole triplet absorption spectrum and decay at ambient temperature.

B Hicks, M White, C A Ghiron, R R Kuntz, W A Volkert
PMCID: PMC411431  PMID: 274709

Abstract

The method of flash photolysis was used to identify the transient absorption spectrum and to characterize the decay kinetics of the indole triplet of human serum albumin. This protein was studied because it contains a single indole side chain which is deeply buried in an expandable oily region and because the phosphorescence of the homologous indole in bovine serum albumin could not be detected at ambient temperatures. The transient was identified on the following basis: (i) its triplet-triplet absorption spectrum was similar to those previously reported for indole and tryptophan; (ii) it was quenched by small quantities of oxygen; and (iii) it was photobleached by 370- to 700-nm light. In a nitrogen-saturated solution at room temperature, the indole triplet decays exponentially for more than a factor of 10 with a lifetime of 0.5 msec. These observations suggest that, because of its exponential decay and relatively long lifetime, the triplet will be more valuable than the indole singlet as an intrinsic reporter group for the study of the structure and dynamics of proteins in solution.

Full text

PDF
1172

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alpert B., Lindqvist L. Porphyrin triplet state probing the diffusion of oxygen in hemoglobin. Science. 1975 Mar 7;187(4179):836–838. doi: 10.1126/science.1114327. [DOI] [PubMed] [Google Scholar]
  2. Baldwin R. L. Intermediates in protein folding reactions and the mechanism of protein folding. Annu Rev Biochem. 1975;44:453–475. doi: 10.1146/annurev.bi.44.070175.002321. [DOI] [PubMed] [Google Scholar]
  3. Baugher J. F., Grossweiner L. I. Ultraviolet inactivation of papain. Photochem Photobiol. 1975 Nov;22(5):163–167. doi: 10.1111/j.1751-1097.1975.tb06731.x. [DOI] [PubMed] [Google Scholar]
  4. Bent D. V., Hayon E. Excited state chemistry of aromatic amino acids and related peptides. III. Tryptophan. J Am Chem Soc. 1975 May 14;97(10):2612–2619. doi: 10.1021/ja00843a004. [DOI] [PubMed] [Google Scholar]
  5. Chen R. F. Removal of fatty acids from serum albumin by charcoal treatment. J Biol Chem. 1967 Jan 25;242(2):173–181. [PubMed] [Google Scholar]
  6. Eftink M. R., Ghiron C. A. Dynamics of a protein matrix revealed by fluorescence quenching. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3290–3294. doi: 10.1073/pnas.72.9.3290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eftink M. R., Ghiron C. A. Exposure of tryptophanyl residues and protein dynamics. Biochemistry. 1977 Dec 13;16(25):5546–5551. doi: 10.1021/bi00644a024. [DOI] [PubMed] [Google Scholar]
  8. Eftink M. R., Ghiron C. A. Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies. Biochemistry. 1976 Feb 10;15(3):672–680. doi: 10.1021/bi00648a035. [DOI] [PubMed] [Google Scholar]
  9. Eftink M. R., Zajicek J. L., Ghiron C. A. A hydrophobic quencher of protein fluorescence: 2,2,2-trichloroethanol. Biochim Biophys Acta. 1977 Apr 25;491(2):473–481. doi: 10.1016/0005-2795(77)90290-2. [DOI] [PubMed] [Google Scholar]
  10. Geacintov N. E., Flamer T. J., Prusik T., Khosrofian J. M. Triplet excited states of polycyclic aromatic compounds as probes of their microenvironment in serum albumin complexes. Biochem Biophys Res Commun. 1975 Jun 16;64(4):1245–1252. doi: 10.1016/0006-291x(75)90826-8. [DOI] [PubMed] [Google Scholar]
  11. Grinvald A., Steinberg I. Z. Fast relaxation processes inn a protein revealed by the decay kinetics of tryptophan fluorescence. Biochemistry. 1974 Dec 3;13(25):5170–5178. doi: 10.1021/bi00722a019. [DOI] [PubMed] [Google Scholar]
  12. Grinvald A., Steinberg I. Z. The fluorescence decay of tryptophan residues in native and denatured proteins. Biochim Biophys Acta. 1976 Apr 14;427(2):663–678. doi: 10.1016/0005-2795(76)90210-5. [DOI] [PubMed] [Google Scholar]
  13. Hazan G., Haas E., Steinberg I. Z. The fluorescence decay of human serum albumin and its subfractions. Biochim Biophys Acta. 1976 May 20;434(1):144–153. doi: 10.1016/0005-2795(76)90044-1. [DOI] [PubMed] [Google Scholar]
  14. Ivkova M. N., Vedenkina N. S., Burshtein E. A. Fluorescence of tryptophan residues in serum albumin. Mol Biol. 1971 Mar-Apr;5(2):168–176. [PubMed] [Google Scholar]
  15. Lakowicz J. R., Weber G. Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry. 1973 Oct 9;12(21):4171–4179. doi: 10.1021/bi00745a021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lehrer S. S. Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry. 1971 Aug 17;10(17):3254–3263. doi: 10.1021/bi00793a015. [DOI] [PubMed] [Google Scholar]
  17. Saviotti M. L., Galley W. C. Room temperature phosphorescence and the dynamic aspects of protein structure. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4154–4158. doi: 10.1073/pnas.71.10.4154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Spector A. A. Fatty acid binding to plasma albumin. J Lipid Res. 1975 May;16(3):165–179. [PubMed] [Google Scholar]
  19. Steinhardt J., Krijn J., Leidy J. G. Differences between bovine and human serum albumins: binding isotherms, optical rotatory dispersion, viscosity, hydrogen ion titration, and fluorescence effects. Biochemistry. 1971 Oct 26;10(22):4005–4015. doi: 10.1021/bi00798a001. [DOI] [PubMed] [Google Scholar]
  20. TEALE F. W. The ultraviolet fluorescence of proteins in neutral solution. Biochem J. 1960 Aug;76:381–388. doi: 10.1042/bj0760381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. de Lauder W. B., Wahl P. Fluorescence studies on human serum albumin. Biochem Biophys Res Commun. 1971 Feb 5;42(3):398–404. doi: 10.1016/0006-291x(71)90384-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES