Abstract
Membrane vesicles were extracted from etiolated and light-grown plants, a plant cell suspension culture, and an alga. Upon addition of ATP and Mg2+, active Ca2+ uptake into the vesicles against a concentration gradient was shown. The dependence of this uptake on ATP and Mg2+ concentrations, pH, and temperature is described. In the absence of oxalate, equilibrium between Ca2+ uptake and efflux was reached after about 30 min. In the presence of oxalate, Ca2+ accumulation continued for at least 120 min. Ca2+ efflux from preloaded vesicles did not depend on ATP. Addition of the ionophores A23187 and Ro 20-0006/006 caused an immediate release of accumulated free Ca2+. ATP-dependent Ca2+ uptake was not inhibited by 10 μM oligomycin.
Keywords: nucleotide specificity, ionophores, oxalate, Mg2+-ATPase, adenylate kinase
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alonso G. L., Bazerque P. M., Arrigó D. M., Tumilasci O. R. Adenosine triphosphate--dependent calcium uptake by rat submaxillary gland microsomes. J Gen Physiol. 1971 Sep;58(3):340–350. doi: 10.1085/jgp.58.3.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elzam O. E., Hodges T. K. Characterization of energy-dependent ca transport in maize mitochondria. Plant Physiol. 1968 Jul;43(7):1108–1114. doi: 10.1104/pp.43.7.1108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hurwitz L., Fitzpatrick D. F., Debbas G., Landon E. J. Localization of calcium pump activity in smooth muscle. Science. 1973 Jan 26;179(4071):384–386. doi: 10.1126/science.179.4071.384. [DOI] [PubMed] [Google Scholar]
- Kato T., Tonomura Y. Uptake of calcium ions into microsomes isolated from Physarum polycephalum. J Biochem. 1977 Jan;81(1):207–213. doi: 10.1093/oxfordjournals.jbchem.a131437. [DOI] [PubMed] [Google Scholar]
- Lai Y. F., Thompson J. E. Effects of Germination on NA-K-stimulated Adenosine 5'-Triphosphatase and ATP-dependent Ion Transport of Isolated Membranes from Cotyledons. Plant Physiol. 1972 Oct;50(4):452–457. doi: 10.1104/pp.50.4.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacLennan D. H., Holland P. C. Calcium transport in sarcoplasmic reticulum. Annu Rev Biophys Bioeng. 1975;4(00):377–404. doi: 10.1146/annurev.bb.04.060175.002113. [DOI] [PubMed] [Google Scholar]
- Moore L., Chen T., Knapp H. R., Jr, Landon E. J. Energy-dependent calcium sequestration activity in rat liver microsomes. J Biol Chem. 1975 Jun 25;250(12):4562–4568. [PubMed] [Google Scholar]
- Rosen B. P., McClees J. S. Active transport of calcium in inverted membrane vesicles of Escherichia coli. Proc Natl Acad Sci U S A. 1974 Dec;71(12):5042–5046. doi: 10.1073/pnas.71.12.5042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scarborough G. A. The neurospora plasma membrane ATPase is an electrogenic pump. Proc Natl Acad Sci U S A. 1976 May;73(5):1485–1488. doi: 10.1073/pnas.73.5.1485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schatzmann H. J. Dependence on calcium concentration and stoichiometry of the calcium pump in human red cells. J Physiol. 1973 Dec;235(2):551–569. doi: 10.1113/jphysiol.1973.sp010403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trotta E. E., de Meis L. ATP-dependent calcium accumulation in brain microsomes. Enhancement by phosphate and oxalate. Biochim Biophys Acta. 1975 Jun 25;394(2):239–247. doi: 10.1016/0005-2736(75)90262-x. [DOI] [PubMed] [Google Scholar]
- Whittam R., Chipperfield A. R. The reaction mechanism of the sodium pump. Biochim Biophys Acta. 1975 Jun 30;415(2):149–171. doi: 10.1016/0304-4157(75)90001-5. [DOI] [PubMed] [Google Scholar]
- van Zutphen H., Demel R. A., Norman A. W., van Deenen L. L. The action of polyene antibiotics on lipid bilayer membranes in the presence of several cations and anions. Biochim Biophys Acta. 1971 Aug 13;241(2):310–330. doi: 10.1016/0005-2736(71)90031-9. [DOI] [PubMed] [Google Scholar]