Abstract
The distribution of cyclic nucleotides on polytene chromosomes isolated from Drosophilia melanogaster salivary glands was examined by using an indirect immunofluorescent technique. With a fixative that minimized the loss of chromosomal proteins, cyclic GMP, but not cyclic AMP, was observed distributed along the chromosomes. The subchromosomal distribution of cyclic GMP correlated with genetically active sites on the chromosomes. After heat-shock treatments, the intensity of cyclic GMP fluorescence was markedly enhanced at specific loci on the chromosomes, with locus 93D as the most intensely fluorescent. Autoradiographic analysis with [3H]uridine revealed that 93D was the most transcriptionally active locus within a particular nucleus. These observations suggest that cyclic GMP may participate in processes associated with transcription on polytene chromosomes. The involvement of cyclic GMP in nuclear events associated with gene expression is discussed.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alfageme C. R., Rudkin G. T., Cohen L. H. Locations of chromosomal proteins in polytene chromosomes. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2038–2042. doi: 10.1073/pnas.73.6.2038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson K. M., Mendelson I. S., Guzik G. Solubilized DNA-dependent nuclear RNA polymerases from the mammary glands of late-pregnant rats. Biochim Biophys Acta. 1975 Feb 24;383(1):56–66. doi: 10.1016/0005-2787(75)90245-2. [DOI] [PubMed] [Google Scholar]
- Ashburner M. Patterns of puffing activity in the salivary gland chromosomes of Drosophila. I. Autosomal puffing patterns in a laboratory stock of Drosophila melanogaster. Chromosoma. 1967;21(4):398–428. doi: 10.1007/BF00336950. [DOI] [PubMed] [Google Scholar]
- Ashburner M. Patterns of puffing activity in the salivary gland chromosomes of Drosophila. V. Responses to environmental treatments. Chromosoma. 1970;31(3):356–376. doi: 10.1007/BF00321231. [DOI] [PubMed] [Google Scholar]
- Ashburner M. Patterns of puffing activity in the salivary gland chromosomes of Drosophila. VI. Induction by ecdysone in salivary glands of D. melanogaster cultured in vitro. Chromosoma. 1972;38(3):255–281. doi: 10.1007/BF00290925. [DOI] [PubMed] [Google Scholar]
- Beadle G. W., Ephrussi B. The Differentiation of Eye Pigments in Drosophila as Studied by Transplantation. Genetics. 1936 May;21(3):225–247. doi: 10.1093/genetics/21.3.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Belyaeva E. S., Zhimulev I. F. RNA synthesis in the Drosophila melanogaster puffs. Cell Differ. 1976 Mar;4(6):415–427. doi: 10.1016/0045-6039(76)90028-2. [DOI] [PubMed] [Google Scholar]
- Benjamin W. B., Goodman R. M. Phosphorylation of dipteran chromosomes and rat liver nuclei. Science. 1969 Oct 31;166(3905):629–630. doi: 10.1126/science.166.3905.629. [DOI] [PubMed] [Google Scholar]
- Berridge M. J. The interaction of cyclic nucleotides and calcium in the control of cellular activity. Adv Cyclic Nucleotide Res. 1975;6:1–98. [PubMed] [Google Scholar]
- Dick C., Johns E. W. The effect of two acetic acid containing fixatives on the histone content of calf thymus deoxyribonucleoprotein and calf thymus tissue. Exp Cell Res. 1968 Aug-Sep;51(2-3):626–632. doi: 10.1016/0014-4827(68)90150-x. [DOI] [PubMed] [Google Scholar]
- Earp H. S., Smith P., Huang Ong S. H., Steiner A. L. Regulation of hepatic nuclear guanylate cyclase. Proc Natl Acad Sci U S A. 1977 Mar;74(3):946–950. doi: 10.1073/pnas.74.3.946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellgaard E. G., Clever U. RNA metabolism during puff induction in Drosophila melanogaster. Chromosoma. 1971;36(1):60–78. doi: 10.1007/BF00326422. [DOI] [PubMed] [Google Scholar]
- FRENSTER J. H., ALLFREY V. G., MIRSKY A. E. REPRESSED AND ACTIVE CHROMATIN ISOLATED FROM INTERPHASE LYMPHOCYTES. Proc Natl Acad Sci U S A. 1963 Dec;50:1026–1032. doi: 10.1073/pnas.50.6.1026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedman D. L. Role of cyclic nucleotides in cell growth and differentiation. Physiol Rev. 1976 Oct;56(4):652–708. doi: 10.1152/physrev.1976.56.4.652. [DOI] [PubMed] [Google Scholar]
- HSU T. C. Differential rate in RNA synthesis between euchromatin and heterochromatin. Exp Cell Res. 1962 Aug;27:332–334. doi: 10.1016/0014-4827(62)90238-0. [DOI] [PubMed] [Google Scholar]
- Jacobs G. A., Smith J. A., Watt R. A., Barry J. M. Ion binding and chromatin condensation. Biochim Biophys Acta. 1976 Aug 2;442(1):109–115. doi: 10.1016/0005-2787(76)90181-7. [DOI] [PubMed] [Google Scholar]
- Jamrich M., Greenleaf A. L., Bautz E. K. Localization of RNA polymerase in polytene chromosomes of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1977 May;74(5):2079–2083. doi: 10.1073/pnas.74.5.2079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson E. M., Allfrey V. G. Differential effects of cyclic adenosine-3',5'-monophosphate on phosphorylation of rat liver nuclear acidic proteins. Arch Biochem Biophys. 1972 Oct;152(2):786–794. doi: 10.1016/0003-9861(72)90274-3. [DOI] [PubMed] [Google Scholar]
- Johnson E. M., Hadden J. W. Phosphorylation of lymphocyte nuclear acidic proteins: regulation by cyclic nucleotides. Science. 1975 Mar 28;187(4182):1198–1200. doi: 10.1126/science.163491. [DOI] [PubMed] [Google Scholar]
- Johnson L. D., Hadden J. W. Cyclic GMP and lymphocyte proliferation: effects on DNA-dependent RNA polymerase I and II activities. Biochem Biophys Res Commun. 1975 Oct 27;66(4):1498–1505. doi: 10.1016/0006-291x(75)90528-8. [DOI] [PubMed] [Google Scholar]
- Johnson T. C., Holland J. J. Ribonucleic acid and protein synthesis in mitotic HeLa cells. J Cell Biol. 1965 Dec;27(3):565–574. doi: 10.1083/jcb.27.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jungmann R. A., Russell D. H. Cyclic AMP, cyclic AMP-dependent protein kinase, and the regulation of gene expression. Life Sci. 1977 Jun 1;20(11):1787–1797. doi: 10.1016/0024-3205(77)90213-2. [DOI] [PubMed] [Google Scholar]
- Kierszenbaum A. L., Tres L. L. Nucleolar and perichromosomal RNA synthesis during meiotic prophase in the mouse testis. J Cell Biol. 1974 Jan;60(1):39–53. doi: 10.1083/jcb.60.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleinsmith L. J. Phosphorylation of non-histone proteins in the regulation of chromosome structure and function. J Cell Physiol. 1975 Apr;85(2 Pt 2 Suppl 1):459–475. doi: 10.1002/jcp.1040850412. [DOI] [PubMed] [Google Scholar]
- Kroeger H., Lezzi M. Regulation of gene action in insect development. Annu Rev Entomol. 1966;11:1–22. doi: 10.1146/annurev.en.11.010166.000245. [DOI] [PubMed] [Google Scholar]
- Kuo J. F., Greengard P. Cyclic nucleotide-dependent protein kinases. VI. Isolation and partial purification of a protein kinase activated by guanosine 3',5'-monophosphate. J Biol Chem. 1970 May 25;245(10):2493–2498. [PubMed] [Google Scholar]
- Kuo J. F., Wyatt G. R., Greengard P. Cyclic nucleotide-dependent protein kinases. IX. Partial purification and some properties of guanosine 3',5'-monophosphate-dependent and adenosine 3',5'-monophosphate-dependent protein kinases from various tissues and species of Arthropoda. J Biol Chem. 1971 Dec 10;246(23):7159–7167. [PubMed] [Google Scholar]
- Langan T. A. Action of adenosine 3',5'-monophosphate-dependent histone kinase in vivo. J Biol Chem. 1969 Oct 25;244(20):5763–5765. [PubMed] [Google Scholar]
- Leake R. E., Trench M. E., Barry J. M. Effect of cations on the consideration of hen erythrocyte nuclei and its relation to gene activation. Exp Cell Res. 1972 Mar;71(1):17–26. doi: 10.1016/0014-4827(72)90257-1. [DOI] [PubMed] [Google Scholar]
- Leenders H. J., Wullems G. J., Berendes H. D. Competitive interaction of adenosine 3',5'-monophosphate on gene activation by ecdysterone. Exp Cell Res. 1970 Nov;63(1):159–164. doi: 10.1016/0014-4827(70)90344-7. [DOI] [PubMed] [Google Scholar]
- McKenzie S. L., Henikoff S., Meselson M. Localization of RNA from heat-induced polysomes at puff sites in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1117–1121. doi: 10.1073/pnas.72.3.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olins D. E., Olins A. L. Physical studies of isolated eucaryotic nuclei. J Cell Biol. 1972 Jun;53(3):715–736. doi: 10.1083/jcb.53.3.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ong S. H., Whitley T. H., Stowe N. W., Steiner A. L. Immunohistochemical localization of 3': 5'-cyclic AMP and 3': 5'-cyclic GMP in rat liver, intestine, and testis. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2022–2026. doi: 10.1073/pnas.72.6.2022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pastan I. H., Johnson G. S., Anderson W. B. Role of cyclic nucleotides in growth control. Annu Rev Biochem. 1975;44:491–522. doi: 10.1146/annurev.bi.44.070175.002423. [DOI] [PubMed] [Google Scholar]
- RITOSSA F. M. EXPERIMENTAL ACTIVATION OF SPECIFIC LOCI IN POLYTENE CHROMOSOMES OF DROSOPHILA. Exp Cell Res. 1964 Sep;35:601–607. doi: 10.1016/0014-4827(64)90147-8. [DOI] [PubMed] [Google Scholar]
- Rensing L., Hardeland R. Effects of adenosine 3',5'-cyclic monophosphate on membrane potential, nuclear volume, and puff size in Drosophila salivary gland in vitro. Exp Cell Res. 1972 Aug;73(2):311–318. doi: 10.1016/0014-4827(72)90053-5. [DOI] [PubMed] [Google Scholar]
- Silver L. M., Elgin S. C. A method for determination of the in situ distribution of chromosomal proteins. Proc Natl Acad Sci U S A. 1976 Feb;73(2):423–427. doi: 10.1073/pnas.73.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spradling A., Penman S., Pardue M. L. Analysis of drosophila mRNA by in situ hybridization: sequences transcribed in normal and heat shocked cultured cells. Cell. 1975 Apr;4(4):395–404. doi: 10.1016/0092-8674(75)90160-9. [DOI] [PubMed] [Google Scholar]
- Spruill A., Steiner A. Immunohistochemical localization of cyclic nucleotides during testicular development. J Cyclic Nucleotide Res. 1976 Jul-Aug;2(4):225–239. [PubMed] [Google Scholar]
- Stein G. S., Spelsberg T. C., Kleinsmith L. J. Nonhistone chromosomal proteins and gene regulation. Science. 1974 Mar 1;183(4127):817–824. doi: 10.1126/science.183.4127.817. [DOI] [PubMed] [Google Scholar]
- Steiner A. L., Ong S. H., Wedner H. J. Cyclic nucleotide immunocytochemistry. Adv Cyclic Nucleotide Res. 1976;7:115–155. [PubMed] [Google Scholar]
- Steiner A. L., Parker C. W., Kipnis D. M. Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J Biol Chem. 1972 Feb 25;247(4):1106–1113. [PubMed] [Google Scholar]
- Tsuzuki J., Kiger J. A., Jr Cyclic AMP binding proteins in early embryos of Drosophila melanogaster. Biochim Biophys Acta. 1975 May 30;393(1):225–235. doi: 10.1016/0005-2795(75)90235-4. [DOI] [PubMed] [Google Scholar]
- Wedner H. F., Hoffer B. J., Battenberg E. B., Steiner A. L., Parker C. W., Bloom F. E. A method for detecting intracellular cyclic adenosine monophosphate by immunofluorescence. J Histochem Cytochem. 1972 Apr;20(4):293–295. doi: 10.1177/20.4.293. [DOI] [PubMed] [Google Scholar]
- Whitley T. H., Stowe N. W., Ong S. H., ey R. L., Steiner A. L. Control and localization of rat adrenal cyclic guanosine 3', 5'-monophosphate. Comparison with adrenal cyclic adenosine 3', 5'-monophosphate. J Clin Invest. 1975 Jul;56(1):146–154. doi: 10.1172/JCI108063. [DOI] [PMC free article] [PubMed] [Google Scholar]






