Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Mar;75(3):1490–1494. doi: 10.1073/pnas.75.3.1490

Chromosomal integration of phage lambda by means of a DNA insertion element.

L A MacHattie, J A Shapiro
PMCID: PMC411498  PMID: 274736

Abstract

Phage lambdacam112, which contains the chloramphenicol resistance transposon Tn9 and has a deletion of attP and the int gene, will lysogenize Escherichia coli K-12. Prophage integration occurs at different chromosomal sites, including lacY and malB, but not at attB. All lambdacam112 prophages are excised from the chromosome after induction but with various efficiencies for different locations. Heteroduplex analysis of lambdaplacZ transducing phages isolated from a lacY::lambdacam112 prophage reveals an insertion sequence 1 (IS1) element at the joint of viral and chromosomal DNA. Two lines of evidence indicate that lambdacam112 encodes an excision activity that recognizes the IS1 element: (i) prophage derepression increases the frequency of excision from lacY to yield lac+ revertants, and (ii) lambdacam112 infection increases reversion of a galT::IS1 mutation about 50-fold. Our results indicate that the IS1 termini of TN9 can replace attP as a site for lambda insertion in the bacterial chromosome and that excision events are catalyzed by an IS1-encoded protein under lambda repressor and N gene control.

Full text

PDF
1490

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gill G. S., MacHattie L. A. Limited permutations of the nucleotide sequence in bacteriophage T1 DNA. J Mol Biol. 1976 Jun 25;104(2):505–515. doi: 10.1016/0022-2836(76)90284-9. [DOI] [PubMed] [Google Scholar]
  2. Landy A., Ross W. Viral integration and excision: structure of the lambda att sites. Science. 1977 Sep 16;197(4309):1147–1160. doi: 10.1126/science.331474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Malamy M. H., Fiandt M., Szybalski W. Electron microscopy of polar insertions in the lac operon of Escherichia coli. Mol Gen Genet. 1972;119(3):207–222. doi: 10.1007/BF00333859. [DOI] [PubMed] [Google Scholar]
  4. Nieder M., Shapiro J. Physiological function of the Pseudomonas putida PpG6 (Pseudomonas oleovorans) alkane hydroxylase: monoterminal oxidation of alkanes and fatty acids. J Bacteriol. 1975 Apr;122(1):93–98. doi: 10.1128/jb.122.1.93-98.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Reif H. J., Saedler H. IS1 is involved in deletion formation in the gal region of E. coli K12. Mol Gen Genet. 1975;137(1):17–28. doi: 10.1007/BF00332538. [DOI] [PubMed] [Google Scholar]
  6. Scott J. R. Phage Pl cryptic. II. Location and regulation of prophage genes. Virology. 1973 Jun;53(2):327–336. doi: 10.1016/0042-6822(73)90210-9. [DOI] [PubMed] [Google Scholar]
  7. Shapiro J. A., Adhya S. L. The galactose operon of E. coli K-12. II. A deletion analysis of operon structure and polarity. Genetics. 1969 Jun;62(2):249–264. doi: 10.1093/genetics/62.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Shapiro J. A. Mutations caused by the insertion of genetic material into the galactose operon of Escherichia coli. J Mol Biol. 1969 Feb 28;40(1):93–105. doi: 10.1016/0022-2836(69)90298-8. [DOI] [PubMed] [Google Scholar]
  9. Shimada K., Weisberg R. A., Gottesman M. E. Prophage lambda at unusual chromosomal locations. I. Location of the secondary attachment sites and the properties of the lysogens. J Mol Biol. 1972 Feb 14;63(3):483–503. doi: 10.1016/0022-2836(72)90443-3. [DOI] [PubMed] [Google Scholar]
  10. Starlinger P., Saedler H. Insertion mutations in microorganisms. Biochimie. 1972;54(2):177–185. doi: 10.1016/s0300-9084(72)80102-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES