Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Mar;75(3):1546–1548. doi: 10.1073/pnas.75.3.1546

Morphine sulfate stimulates the adenylate cyclase in mouse caudate nuclei.

L C Tang, G C Cotzias
PMCID: PMC411510  PMID: 206908

Abstract

The effect of several concentrations of morphine on the activity of adenylate cyclase [ATP pyrophosphate-lyase (cyclizing): EC 4.6.1.1.] was measured in homogenates of caudate nuclei of mice. Morphine stimulated the enzyme at 500 micron and inhibited slightly at 5 micron. Morphine stimulation was blocked by naloxone. Depending on its dose, morphine also increased or decreased the stimulating effect of dopamine on the dopamine-sensitive adenylate cyclase activity of caudate homogenate. Like dopamine, morphine'e effect on the adenylate cyclase activity was increased or decreased, respectively, by pretreating the animals with poly(I).poly(C) or with chloramphenicol. Thus, both dopamine and morphine appear to act on the same receptor. This "new" receptor differs from the one described by Snyder et al. and others, who demonstrated only binding affinity and no enzymatic activity. These data indicate that certain functions of the opiates might be mediated through the dopamine-sensitive adenylate cyclase of the caudate nuclei, which are the dopamine receptors in the brain.

Full text

PDF
1546

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belluzzi J. D., Grant N., Garsky V., Sarantakis D., Wise C. D., Stein L. Analgesia induced in vivo by central administration of enkephalin in rat. Nature. 1976 Apr 15;260(5552):625–626. doi: 10.1038/260625a0. [DOI] [PubMed] [Google Scholar]
  2. COTZIAS G. C., GREENOUGH J. J. Concomitant analysis for oxygen uptake and ammonia evolution during the monoamine oxidase reaction. Arch Biochem Biophys. 1958 May;75(1):15–23. doi: 10.1016/0003-9861(58)90392-8. [DOI] [PubMed] [Google Scholar]
  3. Clouet D. H., Iwatsubo K. Dopamine-sensitive adenylate cyclase of the caudate nucleus of rats treated with morphine. Life Sci. 1975 Jul 1;17(1):35–40. doi: 10.1016/0024-3205(75)90230-1. [DOI] [PubMed] [Google Scholar]
  4. Cotzias G. C., Miller S. T., Nicholson A. R., Jr, Maston W. H., Tang L. C. Prolongation of the life-span in mice adapted to large amounts of L-dopa. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2466–2469. doi: 10.1073/pnas.71.6.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cotzias G. C., Miller S. T., Tang L. C., Papavasiliou P. S. Levodopa, fertility, and longevity. Science. 1977 Apr 29;196(4289):549–551. doi: 10.1126/science.850799. [DOI] [PubMed] [Google Scholar]
  6. Cotzias G. C., Tang L. C., Ginos J. Z. Monoamine oxidase and cerebral uptake of dopaminergic drugs. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2715–2719. doi: 10.1073/pnas.71.7.2715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dickey R. P., Minton J. P. Levodopa relief of bone pain from breast cancer. N Engl J Med. 1972 Apr 13;286(15):843–843. doi: 10.1056/NEJM197204132861518. [DOI] [PubMed] [Google Scholar]
  8. Eidelberg E., Erspamer R. Dopaminergic mechanisms of opiate actions in brain. J Pharmacol Exp Ther. 1975 Jan;192(1):50–57. [PubMed] [Google Scholar]
  9. Goldstein A., Lowney L. I., Pal B. K. Stereospecific and nonspecific interactions of the morphine congener levorphanol in subcellular fractions of mouse brain. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1742–1747. doi: 10.1073/pnas.68.8.1742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goldstein A. Opioid peptides endorphins in pituitary and brain. Science. 1976 Sep 17;193(4258):1081–1086. doi: 10.1126/science.959823. [DOI] [PubMed] [Google Scholar]
  11. Hughes J., Smith T. W., Kosterlitz H. W., Fothergill L. A., Morgan B. A., Morris H. R. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature. 1975 Dec 18;258(5536):577–580. doi: 10.1038/258577a0. [DOI] [PubMed] [Google Scholar]
  12. Kebabian J. W., Petzold G. L., Greengard P. Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the "dopamine receptor". Proc Natl Acad Sci U S A. 1972 Aug;69(8):2145–2149. doi: 10.1073/pnas.69.8.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kosterlitz H. W., Watt A. J. Kinetic parameters of narcotic agonists and antagonists, with particular reference to N-allylnoroxymorphone (naloxone). Br J Pharmacol Chemother. 1968 Jun;33(2):266–276. doi: 10.1111/j.1476-5381.1968.tb00988.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Li C. H., Chung D. Isolation and structure of an untriakontapeptide with opiate activity from camel pituitary glands. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1145–1148. doi: 10.1073/pnas.73.4.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ling N., Burgus R., Guillemin R. Isolation, primary structure, and synthesis of alpha-endorphin and gamma-endorphin, two peptides of hypothalamic-hypophysial origin with morphinomimetic activity. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3942–3946. doi: 10.1073/pnas.73.11.3942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Minton J. P. Proceedings: The response of breast cancer patients with bone pain to L-dopa. Cancer. 1974 Feb;33(2):358–363. doi: 10.1002/1097-0142(197402)33:2<358::aid-cncr2820330209>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  17. Naito K., Kuriyama K. Effect of morphine administration on adenyl cyclase and 3',5'-cyclic nucleotide phosphodiesterase activities in the brain. Jpn J Pharmacol. 1973 Apr;23(2):274–276. doi: 10.1254/jjp.23.274. [DOI] [PubMed] [Google Scholar]
  18. Nixon D. W. Letter: Use of L-dopa to relieve pain from bone metastases. N Engl J Med. 1975 Mar 20;292(12):647–647. [PubMed] [Google Scholar]
  19. Pasternak G. W., Goodman R., Snyder S. H. An endogenous morphine-like factor in mammalian brain. Life Sci. 1975 Jun 15;16(12):1765–1769. doi: 10.1016/0024-3205(75)90270-2. [DOI] [PubMed] [Google Scholar]
  20. Pert C. B., Pasternak G., Snyder S. H. Opiate agonists and antagonists discriminated by receptor binding in brain. Science. 1973 Dec 28;182(4119):1359–1361. doi: 10.1126/science.182.4119.1359. [DOI] [PubMed] [Google Scholar]
  21. Pert C. B., Snyder S. H. Opiate receptor: demonstration in nervous tissue. Science. 1973 Mar 9;179(4077):1011–1014. doi: 10.1126/science.179.4077.1011. [DOI] [PubMed] [Google Scholar]
  22. Pert C. B., Snyder S. H. Properties of opiate-receptor binding in rat brain. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2243–2247. doi: 10.1073/pnas.70.8.2243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sato M., Nakamura N., Takagi H. Effect of morphine on bradykinin-induced unitary discharges in the spinal cord of the rabbit. Eur J Pharmacol. 1971 Oct;16(2):245–247. doi: 10.1016/0014-2999(71)90021-5. [DOI] [PubMed] [Google Scholar]
  24. Simantov R., Kuhar M. J., Uhl G. R., Snyder S. H. Opioid peptide enkephalin: immunohistochemical mapping in rat central nervous system. Proc Natl Acad Sci U S A. 1977 May;74(5):2167–2171. doi: 10.1073/pnas.74.5.2167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Simantov R., Snyder S. H. Morphine-like peptides in mammalian brain: isolation, structure elucidation, and interactions with the opiate receptor. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2515–2519. doi: 10.1073/pnas.73.7.2515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Simon E. J. In search of the opiate receptor. Am J Med Sci. 1973 Sep;266(3):160–168. doi: 10.1097/00000441-197309000-00001. [DOI] [PubMed] [Google Scholar]
  27. Snyder S. H., Pert C. B., Pasternak G. W. The opiate receptor. Ann Intern Med. 1974 Oct;81(4):534–540. doi: 10.7326/0003-4819-81-4-534. [DOI] [PubMed] [Google Scholar]
  28. Takagi H., Doi T., Kawasaki K. Effects of morphine, L-DOPA and tetrabenazine on the lamina V cells of spinal dorsal horn. Life Sci. 1975 Jul 1;17(1):67–71. doi: 10.1016/0024-3205(75)90237-4. [DOI] [PubMed] [Google Scholar]
  29. Tang L. C., Cotzias G. C., Dunn M. Changing the actions of neuroactive drugs by changing brain protein synthesis. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3350–3354. doi: 10.1073/pnas.71.9.3350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tang L. C., Cotzias G. C. L-3,4-dihydroxyphenylalanine-induced hypersensitivity simulating features of denervation. Proc Natl Acad Sci U S A. 1977 May;74(5):2126–2129. doi: 10.1073/pnas.74.5.2126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tang L. C., Cotzias G. C. Opposing effects of dopaminergic to cholinergic compounds on a cerebral dopamine-activated adenylate cyclase. Proc Natl Acad Sci U S A. 1977 Feb;74(2):769–773. doi: 10.1073/pnas.74.2.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Teschemacher H., Opheim K. E., Cox B. M., Goldstein A. A peptide-like substance from pituitary that acts like morphine. I. Isolation. Life Sci. 1975 Jun 15;16(12):1771–1775. doi: 10.1016/0024-3205(75)90271-4. [DOI] [PubMed] [Google Scholar]
  33. WURTMAN R. J., AXELROD J. A SENSITIVE AND SPECIFIC ASSAY FOR THE ESTIMATION OF MONOAMINE OXIDASE. Biochem Pharmacol. 1963 Dec;12:1439–1441. doi: 10.1016/0006-2952(63)90215-6. [DOI] [PubMed] [Google Scholar]
  34. Walker J. M., Berntson G. G., Sandman C. A., Coy D. H., Schally A. V., Kastin A. J. An analog of enkephalin having prolonged opiate-like effects in vivo. Science. 1977 Apr 1;196(4285):85–87. doi: 10.1126/science.190683. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES