Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Sep;76(9):4180–4184. doi: 10.1073/pnas.76.9.4180

Photoelectric properties and detection of the aromatic carcinogens benza[a]pyrene and dimethylbenzanthracene.

W A Houle, H M Brown, O H Griffith
PMCID: PMC411535  PMID: 116229

Abstract

The absolute photoelectron quantum yield spectra for benzo[a]pyrene and dimethylbenzanthracene are presented in the wavelength range 180--230 nm. These polycyclic aromatic carcinogens have photoelectron quantum yields of approximately 2 x 10(-3) electrons per incident photon at 180 nm. The quantum yields fall off quickly and monotonically at wavelengths longer than 210 nm (5.9 eV). Threshold values for benzo[a]pyrene and dimethylbenzanthracene are 5.25 +/- 0.06 cV and 5.27 +/- 0.04 eV, respectively. The photoelectron quantum yields of benzo[a]pyrene and dimethylbenzanthracene are several orders of magnitude greater than typical components of biological membranes (amino acids, phospholipids, and polysaccharides). Preliminary micrographs of benzo[a]pyrene and dimethylbenzanthracene sublimed onto poly(L-lysine) and onto dimyristoyl phosphatidylcholine demonstrate the high contrast of small crystallites of carcinogens against a background of membrane components. These results and calculations involving relative contrast factors suggest that the distribution of these carcinogens in biological membranes can be determined by using photoelectron microscopy.

Full text

PDF
4180

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes R. B., Amend J., Sistrom W. R., Griffith O. H. Quantum yield and image contrast of bacteriochlorophyll monolayers in photoelectron microscopy. Biophys J. 1978 Mar;21(3):195–202. doi: 10.1016/S0006-3495(78)85519-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birrell G. B., Burke C., Dehlinger P., Griffith O. H. Contrast in the photoelectric effect of organic and biochemical surfaces. A first step towards selective labeling in photoelectron microscopy. Biophys J. 1973 May;13(5):462–469. doi: 10.1016/S0006-3495(73)85999-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dam R. J., Burke C. A., Griffith O. H. Photoelectron quantum yields of the amino acids. Biophys J. 1974 Jun;14(6):467–472. doi: 10.1016/S0006-3495(74)85927-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dam R. J., Kongslie K. F., Griffith O. H. Photoelectron quantum yields and photoelectron microscopy of chlorophyll and chlorophyllin. Photochem Photobiol. 1975 Dec;22(6):265–268. doi: 10.1111/j.1751-1097.1975.tb06747.x. [DOI] [PubMed] [Google Scholar]
  5. Dam R. J., Kongslie K. F., Griffith O. H. Photoelectron quantum yields of hemin, hemoglobin, and apohemoglobin. Possible applications to photoelectron microscopy of heme proteins in biological membranes. Biophys J. 1974 Dec;14(12):933–939. doi: 10.1016/S0006-3495(74)85960-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dam R. J., Nadakavukaren K. K., Griffith O. H. Photoelectron microscopy of cell surfaces. J Microsc. 1977 Nov;111(2):211–217. doi: 10.1111/j.1365-2818.1977.tb00061.x. [DOI] [PubMed] [Google Scholar]
  7. Gelboin H. V., Kinoshita N., Wiebel F. J. Microsomal hydroxylases: induction and role in polycyclic hydrocarbon carcinogenesis and toxicity. Fed Proc. 1972 Jul-Aug;31(4):1298–1309. [PubMed] [Google Scholar]
  8. Griffith O. H., Lesch G. H., Rempfer G. F., Birrell G. B., Burke C. A., Schlosser D. W., Mallon M. H., Lee G. B., Stafford R. G., Jost P. C. Photoelectron microscopy: a new approach to mapping organic and biological surfaces. Proc Natl Acad Sci U S A. 1972 Mar;69(3):561–565. doi: 10.1073/pnas.69.3.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grund S., Eichberg J., Engel W. Biologische Strukturen im Photoelektronenemissionsmikroskop. Semidünnschnitte von Kükenleber in den Einbettungsmitteln Durcupan, Vestopal, Araldit und Epon. J Ultrastruct Res. 1978 Aug;64(2):191–203. doi: 10.1016/s0022-5320(78)80037-9. [DOI] [PubMed] [Google Scholar]
  10. Moschel R. C., Baird W. M., Dipple A. Metabolic activation of the carcinogen 7,12-dimethylbenz[a]anthracene for DNA binding. Biochem Biophys Res Commun. 1977 Jun 20;76(4):1092–1098. doi: 10.1016/0006-291x(77)90968-8. [DOI] [PubMed] [Google Scholar]
  11. Sims P., Grover P. L. Epoxides in polycyclic aromatic hydrocarbon metabolism and carcinogenesis. Adv Cancer Res. 1974;20:165–274. doi: 10.1016/s0065-230x(08)60111-6. [DOI] [PubMed] [Google Scholar]
  12. Yang C. S. The organization and interaction of monoxygenase enzymes in the microsomal membrane. Life Sci. 1977 Oct 15;21(8):1047–1057. doi: 10.1016/0024-3205(77)90102-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES