Abstract
We describe a method to facilitate radioimaging with technetium-99m (99mTc) by genetic incorporation of a 99mTc chelation site in recombinant single-chain Fv (sFv) antibody proteins. This method relies on fusion of the sFv C terminus with a Gly4Cys peptide that specifically coordinates 99mTc. By using analogues of the 26-10 anti-digoxin sFv as our primary model, we find that addition of the chelate peptide, to form 26-10-1 sFv', does not alter the antigen-binding affinity of sFv. We have demonstrated nearly quantitative chelation of 0.5-50 mCi of 99mTc per mg of 26-10-1 sFv' (1 Ci = 37 GBq). These 99mTc-labeled sFv' complexes are highly stable to challenge with saline buffers, plasma, or diethylenetriaminepentaacetic acid. We find that the 99mTc-labeled 741F8-1 sFv', specific for the c-erbB-2 tumor-associated antigen, is effective in imaging human ovarian carcinoma in a scid mouse tumor xenograft model. This fusion chelate methodology should be applicable to diagnostic imaging with 99mTc and radioimmunotherapy with 186Re or 188Re, and its use could extend beyond the sFv' to other engineered antibodies, recombinant proteins, and synthetic peptides.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams G. P., McCartney J. E., Tai M. S., Oppermann H., Huston J. S., Stafford W. F., 3rd, Bookman M. A., Fand I., Houston L. L., Weiner L. M. Highly specific in vivo tumor targeting by monovalent and divalent forms of 741F8 anti-c-erbB-2 single-chain Fv. Cancer Res. 1993 Sep 1;53(17):4026–4034. [PubMed] [Google Scholar]
- Chaudhary V. K., Queen C., Junghans R. P., Waldmann T. A., FitzGerald D. J., Pastan I. A recombinant immunotoxin consisting of two antibody variable domains fused to Pseudomonas exotoxin. Nature. 1989 Jun 1;339(6223):394–397. doi: 10.1038/339394a0. [DOI] [PubMed] [Google Scholar]
- Chester K. A., Begent R. H., Robson L., Keep P., Pedley R. B., Boden J. A., Boxer G., Green A., Winter G., Cochet O. Phage libraries for generation of clinically useful antibodies. Lancet. 1994 Feb 19;343(8895):455–456. doi: 10.1016/s0140-6736(94)92695-6. [DOI] [PubMed] [Google Scholar]
- Clackson T., Hoogenboom H. R., Griffiths A. D., Winter G. Making antibody fragments using phage display libraries. Nature. 1991 Aug 15;352(6336):624–628. doi: 10.1038/352624a0. [DOI] [PubMed] [Google Scholar]
- Das C., Kulkarni P. V., Constantinescu A., Antich P., Blattner F. R., Tucker P. W. Recombinant antibody-metallothionein: design and evaluation for radioimmunoimaging. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9749–9753. doi: 10.1073/pnas.89.20.9749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fritzberg A. R., Kasina S., Eshima D., Johnson D. L. Synthesis and biological evaluation of technetium-99m MAG3 as a hippuran replacement. J Nucl Med. 1986 Jan;27(1):111–116. [PubMed] [Google Scholar]
- George A. J., French R. R., Glennie M. J. Measurement of kinetic binding constants of a panel of anti-saporin antibodies using a resonant mirror biosensor. J Immunol Methods. 1995 Jun 14;183(1):51–63. doi: 10.1016/0022-1759(95)00031-5. [DOI] [PubMed] [Google Scholar]
- George A. J., Titus J. A., Jost C. R., Kurucz I., Perez P., Andrew S. M., Nicholls P. J., Huston J. S., Segal D. M. Redirection of T cell-mediated cytotoxicity by a recombinant single-chain Fv molecule. J Immunol. 1994 Feb 15;152(4):1802–1811. [PubMed] [Google Scholar]
- Huston J. S., Levinson D., Mudgett-Hunter M., Tai M. S., Novotný J., Margolies M. N., Ridge R. J., Bruccoleri R. E., Haber E., Crea R. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5879–5883. doi: 10.1073/pnas.85.16.5879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huston J. S., Mudgett-Hunter M., Tai M. S., McCartney J., Warren F., Haber E., Oppermann H. Protein engineering of single-chain Fv analogs and fusion proteins. Methods Enzymol. 1991;203:46–88. doi: 10.1016/0076-6879(91)03005-2. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Mather S. J., Ellison D. Reduction-mediated technetium-99m labeling of monoclonal antibodies. J Nucl Med. 1990 May;31(5):692–697. [PubMed] [Google Scholar]
- McCartney J. E., Tai M. S., Hudziak R. M., Adams G. P., Weiner L. M., Jin D., Stafford W. F., 3rd, Liu S., Bookman M. A., Laminet A. A. Engineering disulfide-linked single-chain Fv dimers [(sFv')2] with improved solution and targeting properties: anti-digoxin 26-10 (sFv')2 and anti-c-erbB-2 741F8 (sFv')2 made by protein folding and bonded through C-terminal cysteinyl peptides. Protein Eng. 1995 Mar;8(3):301–314. doi: 10.1093/protein/8.3.301. [DOI] [PubMed] [Google Scholar]
- Nedelman M. A., Shealy D. J., Boulin R., Brunt E., Seasholtz J. I., Allen I. E., McCartney J. E., Warren F. D., Oppermann H., Pang R. H. Rapid infarct imaging with a technetium-99m-labeled antimyosin recombinant single-chain Fv: evaluation in a canine model of acute myocardial infarction. J Nucl Med. 1993 Feb;34(2):234–241. [PubMed] [Google Scholar]
- Salacinski P. R., McLean C., Sykes J. E., Clement-Jones V. V., Lowry P. J. Iodination of proteins, glycoproteins, and peptides using a solid-phase oxidizing agent, 1,3,4,6-tetrachloro-3 alpha,6 alpha-diphenyl glycoluril (Iodogen). Anal Biochem. 1981 Oct;117(1):136–146. doi: 10.1016/0003-2697(81)90703-x. [DOI] [PubMed] [Google Scholar]
- Sawyer J. R., Tucker P. W., Blattner F. R. Metal-binding chimeric antibodies expressed in Escherichia coli. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9754–9758. doi: 10.1073/pnas.89.20.9754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schott M. E., Milenic D. E., Yokota T., Whitlow M., Wood J. F., Fordyce W. A., Cheng R. C., Schlom J. Differential metabolic patterns of iodinated versus radiometal chelated anticarcinoma single-chain Fv molecules. Cancer Res. 1992 Nov 15;52(22):6413–6417. [PubMed] [Google Scholar]
- Stoffel M., Jamar F., Van Nerom C., Verbruggen A., Mourad M., Leners N., Squifflet J. P., Beckers C. Evaluation of technetium-99m-L,L-EC in renal transplant recipients: a comparative study with technetium-99m-MAG3 and iodine-125-OIH. J Nucl Med. 1994 Dec;35(12):1951–1958. [PubMed] [Google Scholar]
- Tai M. S., Mudgett-Hunter M., Levinson D., Wu G. M., Haber E., Oppermann H., Huston J. S. A bifunctional fusion protein containing Fc-binding fragment B of staphylococcal protein A amino terminal to antidigoxin single-chain Fv. Biochemistry. 1990 Sep 4;29(35):8024–8030. doi: 10.1021/bi00487a005. [DOI] [PubMed] [Google Scholar]
- Thrall J. H., Freitas J. E., Swanson D., Rogers W. L., Clare J. M., Brown M. L., Pitt B. Clinical comparison of cardiac blood pool visualization with technetium-99m red blood cells labeled in vivo and with technetium-99m human serum albumin. J Nucl Med. 1978 Jul;19(7):796–803. [PubMed] [Google Scholar]
- Verbruggen A. M., Nosco D. L., Van Nerom C. G., Bormans G. M., Adriaens P. J., De Roo M. J. Technetium-99m-L,L-ethylenedicysteine: a renal imaging agent. I. Labeling and evaluation in animals. J Nucl Med. 1992 Apr;33(4):551–557. [PubMed] [Google Scholar]
- Weber R. W., Boutin R. H., Nedelman M. A., Lister-James J., Dean R. T. Enhanced kidney clearance with an ester-linked 99mTc-radiolabeled antibody Fab'-chelator conjugate. Bioconjug Chem. 1990 Nov-Dec;1(6):431–437. doi: 10.1021/bc00006a010. [DOI] [PubMed] [Google Scholar]
- Yokota T., Milenic D. E., Whitlow M., Schlom J. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res. 1992 Jun 15;52(12):3402–3408. [PubMed] [Google Scholar]