Skip to main content
Frontiers in Neural Circuits logoLink to Frontiers in Neural Circuits
editorial
. 2014 Jul 30;8:91. doi: 10.3389/fncir.2014.00091

The world according to zebrafish: how neural circuits generate behavior

Germán Sumbre 1,2,3,*, Gonzalo G de Polavieja 4,5,*
PMCID: PMC4115616  PMID: 25126059

Understanding how the brain controls motor behavior and generates cognitive functions still remains one of the most challenging goals in science and neuroscience in particular.

Toward this goal it is important to use a multidisciplinary approach involving genetics, molecular biology, optics, ethology, neurobiology, and mathematical modeling. This strategy is most efficient when using animal models with relatively simple nervous systems still capable of producing complex motor behaviors. Genetically tractable models enable labeling specific neurons and monitoring and manipulating neuronal activity of single cells or entire circuits via optogenetics (Fenno et al., 2011; Akerboom et al., 2013; Aston-Jones and Deisseroth, 2013; Chen et al., 2013; Marvin et al., 2013).

The zebrafish Danio rerio is a small shoaling tropical fresh-water fish native to rivers of south Asia. It is a member of the teleostei infraclass, a monophyletic group that emerged ~340 million years ago (Amores et al., 2011). Compared to other vertebrate species, teleost fish underwent an additional round of whole-genome duplication (Meyer and Schartl, 1999).

Zebrafish has been used for developmental and genetic studies since the late 1950s. By the 1980s, zebrafish was already used as a genetically tractable organism. In 2001 the zebrafish genome-sequencing project was launched and recently its protein-coding genes were compared to those of humans (Friedrich et al., 2010; Howe et al., 2013). This large-scale project showed that zebrafish have 26,206 protein-coding genes (Collins et al., 2012), with ~70% of human genes having at least one obvious zebrafish ortholog (Howe et al., 2013).

The combination of high-throughput mutagenesis and TILLING (Wienholds et al., 2003) or specifically targeted DNA sequence mutations [Zinc-finger nucleases (Doyon et al., 2008), TALENS (Sander et al., 2011) and CRISPR (Hwang et al., 2013)], enable DNA precise editing and thus the generation of transgenic and/or specific mutant zebrafish lines. Among this increasing collection of available mutants, several were identified as vertebrate models of certain human neurodevelopmental, neurological, and neurodegenerative syndromes and diseases [e.g., Parkinson's (Lam et al., 2005; Flinn et al., 2008), Alzheimer's (Newman et al., 2007, 2011), Rett's syndrome (Pietri et al., 2013), ALS (Gibbs et al., 1976; Burrill and Easter, 1994; Da Costa et al., 2014), tinnitus (Wu et al., 2014), psychiatric disorders (Norton, 2013), Huntington's disease (Schiffer et al., 2007), Lowe's syndrome (Ramirez et al., 2012), and more (Sager et al., 2010)].

Furthermore, large-scale enhancer-trap screens in combination with DNA insertion methods (e.g., Tol2, Kawakami and Shima, 1999), bioinformatics and the Gal4/UAS system generated a vast collection of transgenic fish and a large database of tissue/cell-type specific promoters (Scott et al., 2007; Asakawa et al., 2008).

An additional advantage of the zebrafish larva model is its transparent skin, small size and the fact that it mainly uses cutaneous breathing (up to ~14 days post-fertilization, dpf). These three characteristics make possible to restrain larvae in a drop of low-melting agarose without the use of any paralyzers or anesthetics, in intact conditions, without the use of surgical procedures to expose and image the brain.

With the development of recent state-of-the-art optical techniques including two-photon scanning microscopy (Ahrens et al., 2012; Portugues et al., 2014), Single plain illumination microscopy (Ahrens et al., 2013b; Panier et al., 2013), lightfield microscopy (Broxton et al., 2013), and Spatial light modulator microscopy (Quirin et al., 2013), the entire brain can be now simultaneously imaged and its activity monitored with single or near single-cell resolution. On the other hand, fiber optics (Miri et al., 2011; Kubo et al., 2014), Digital micromirror devices (Wyart et al., 2009), and holographic pattern illumination (Vaziri and Emiliani, 2012) can be used to stimulate optogenetic tools in single cells or large neuronal circuits.

The combination of all these techniques together with the larva's small size and skin transparency enable monitoring in toto brain dynamics and manipulate its activity in an intact, non-anesthetized, non-paralyzed vertebrate (Ahrens et al., 2013b; Panier et al., 2013; Portugues et al., 2014).

From a behavioral point of view, upon hatching the larva needs to immediately catch prey and avoid predators in order to survive. This strong evolutionary pressure leads to a rapid development of functional sensory systems in general, and vision in particular, creating a reach repertoire of visuo-motor behaviors (Fleisch and Neuhauss, 2006; Portugues and Engert, 2009). For example, the startle escape response [a flash of light induces a directional swimming behavior (Burgess and Granato, 2007)], optokinetic response [OKR, compensatory eye saccades evoked by coherent field motion (Rinner et al., 2005; Mueller and Neuhauss, 2010)], optomotor response [OMR, compensatory tail movements evoked by coherent field motion (Orger et al., 2000)], dorsal-light response (DLR, Neuhauss, 2003), feeding behavior (Budick and O'Malley, 2000), and eye lateralization [preferential use of one eye over the other depending on the type of visual stimulus (Miklósi and Andrew, 2006)]. Furthermore, they also show rheotaxis (Olszewski et al., 2012), odor and gustatory-induced behaviors (Mathuru et al., 2012; Boyer et al., 2013), learning and memory (Aizenberg and Schuman, 2011; Valente et al., 2012; Roberts et al., 2013), and circadian rhythms and sleep (Naumann et al., 2010; Chiu and Prober, 2013; Elbaz et al., 2013), among others.

At the juvenile and adult stages, zebrafish develop more complex behaviors such as social learning, shoaling, group decision making and learning, courtship, territoriality, and hierarchy (Arganda et al., 2012; Oliveira, 2013).

With all these multidisciplinary advantages in hand and a relative simple nervous system [~100,000 neurons at 7 dpf (Hill et al., 2003; Naumann et al., 2010)], still with a well-conserved vertebrate structure, the zebrafish is becoming an emerging experimental model in neurosciences and neuroethology (Friedrich et al., 2010).

Recent studies have shown that it is also possible to monitor and/or manipulate neuronal dynamics in partially agarose-restrained behaving intact larvae and therefore correlate neuronal activity and motor behavior. Moreover, close-loop visual virtual reality can be used so larvae can get visual feedback of their own acts despite being immobilized (Ahrens et al., 2012, 2013a).

Alternatively, although lacking cellular resolution, using transgenic larvae expressing a bioluminescence protein such as GFP-Aequorin expressed in specific cell populations, it is possible to monitor brain activities in unrestrained freely behaving animals (Naumann et al., 2010).

Furthermore, due to the zebrafish ex-uterus development all embryonic and larval developmental stages following fecundation are accessible for imaging.

The combination of the genetic and optical state-of-the-art techniques with the zebrafish experimental model is yielding high-dimensional large data sets pushing the limits of current data analysis standards, forcing for the development of new methodologies and novel theoretical models.

A future challenge in the field will be monitoring whole-brain activity with near single-neuron resolution from multiple freely behaving and socially interacting individuals.

In this topic we have gathered a collection of original articles, reviews, and opinions covering a wide-spectrum of topics from behavior up to whole-brain activity recordings, both in wild type and in neurological human-syndrome models, providing an overview of current state and future directions of zebrafish circuits neuroscience and behavior research field.

We have organized this eBook in 4 different chapters:

  1. Neuroanatomy

  2. Neuronal circuit dynamics

  3. Behavior

  4. Models of brain disorders and addiction

The zebrafish model in combination with recently developed imaging techniques, optogenetics, and sophisticated mathematical methods for analysis of the acquired large data sets is bringing us closer than ever before to the understanding of how brain dynamics relates to behavior.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Ahrens M. B., Huang K. H., Narayan S., Mensh B. D., Engert F. (2013a). Two-photon calcium imaging during fictive navigation in virtual environments. Front. Neural Circuits 7:104 10.3389/fncir.2013.00104 [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ahrens M. B., Li J. M., Orger M. B., Robson D. N., Schier A. F., Engert F., et al. (2012). Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485, 471–477 10.1038/nature11057 [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ahrens M. B., Orger M. B., Robson D. N., Li J. M., Keller P. J. (2013b). Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413–420 10.1038/nmeth.2434 [DOI] [PubMed] [Google Scholar]
  4. Aizenberg M., Schuman E. M. (2011). Cerebellar-dependent learning in larval zebrafish. J. Neurosci. 31, 8708–8712 10.1523/JNEUROSCI.6565-10.2011 [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Akerboom J., Carreras Calderón N., Tian L., Wabnig S., Prigge M., Tolö J., et al. (2013). Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front. Mol. Neurosci. 6:2 10.3389/fnmol.2013.00002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Amores A., Catchen J., Ferrara A., Fontenot Q., Postlethwait J. H. (2011). Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication. Genetics 188, 799–808 10.1534/genetics.111.127324 [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Arganda S., Pérez-Escudero A., de Polavieja G. G. (2012). A common rule for decision making in animal collectives across species. Proc. Natl. Acad. Sci. U.S.A. 109, 20508–20513 10.1073/pnas.1210664109 [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Asakawa K., Suster M. L., Mizusawa K., Nagayoshi S., Kotani T., Urasaki A., et al. (2008). Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc. Natl. Acad. Sci. U.S.A. 105, 1255–1260 10.1073/pnas.0704963105 [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Aston-Jones G., Deisseroth K. (2013). Recent advances in optogenetics and pharmacogenetics. Brain Res. 1511, 1–5 10.1016/j.brainres.2013.01.026 [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Boyer B., Ernest S., Rosa F. (2013). Egr-1 induction provides a genetic response to food aversion in zebrafish. Front. Behav. Neurosci. 7:51 10.3389/fnbeh.2013.00051 [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Broxton M., Grosenick L., Yang S., Cohen N., Andalman A., Deisseroth K., et al. (2013). Wave optics theory and 3-D deconvolution for the light field microscope. Opt. Express 21, 25418–25439 10.1364/OE.21.025418 [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Budick S. A., O'Malley D. M. (2000). Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. J. Exp. Biol. 203, 2565–2579 [DOI] [PubMed] [Google Scholar]
  13. Burgess H. A., Granato M. (2007). Modulation of locomotor activity in larval zebrafish during light adaptation. J. Exp. Biol. 210, 2526–2539 10.1242/jeb.003939 [DOI] [PubMed] [Google Scholar]
  14. Burrill J. D., Easter S. S. (1994). Development of the retinofugal projections in the embryonic and larval zebrafish (Brachydanio rerio). J. Comp. Neurol. 346, 583–600 10.1002/cne.903460410 [DOI] [PubMed] [Google Scholar]
  15. Chen T.-W., Wardill T. J., Sun Y., Pulver S. R., Renninger S. L., Baohan A., et al. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 10.1038/nature12354 [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Chiu C. N., Prober D. A. (2013). Regulation of zebrafish sleep and arousal states: current and prospective approaches. Front. Neural Circuits 7:58 10.3389/fncir.2013.00058 [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Collins J. E., White S., Searle S. M. J., Stemple D. L. (2012). Incorporating RNA-seq data into the zebrafish Ensembl genebuild. Genome Res. 22, 2067–2078 10.1101/gr.137901.112 [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Da Costa M. M. J., Allen C. E., Higginbottom A., Ramesh T., Shaw P. J., McDermott C. J. (2014). A new zebrafish model produced by TILLING of SOD1-related amyotrophic lateral sclerosis replicates key features of the disease and represents a tool for in vivo therapeutic screening. Dis. Model. Mech. 7, 73–81 10.1242/dmm.012013 [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Doyon Y., McCammon J. M., Miller J. C., Faraji F., Ngo C., Katibah G. E., et al. (2008). Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat. Biotechnol. 26, 702–708 10.1038/nbt1409 [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Elbaz I., Foulkes N. S., Gothilf Y., Appelbaum L. (2013). Circadian clocks, rhythmic synaptic plasticity and the sleep-wake cycle in zebrafish. Front. Neural Circuits 7:9 10.3389/fncir.2013.00009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Fenno L., Yizhar O., Deisseroth K. (2011). The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 10.1146/annurev-neuro-061010-113817 [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Fleisch V. C., Neuhauss S. C. F. (2006). Visual behavior in zebrafish. Zebrafish 3, 191–201 10.1089/zeb.2006.3.191 [DOI] [PubMed] [Google Scholar]
  23. Flinn L., Bretaud S., Lo C., Ingham P. W., Bandmann O. (2008). Zebrafish as a new animal model for movement disorders. J. Neurochem. 106, 1991–1997 10.1111/j.1471-4159.2008.05463.x [DOI] [PubMed] [Google Scholar]
  24. Friedrich R. W., Jacobson G. A., Zhu P. (2010). Circuit neuroscience in zebrafish. Curr. Biol. 20, R371–R381 10.1016/j.cub.2010.02.039 [DOI] [PubMed] [Google Scholar]
  25. Gibbs H., McCall S., Venkatesan T. (1976). Differential gain and bistability using a sodium-filled fabry-perot interferometer. Phys. Rev. Lett. 36, 1135–1138 10.1103/PhysRevLett.36.1135 [DOI] [Google Scholar]
  26. Hill A., Howard C. V., Strahle U., Cossins A. (2003). Neurodevelopmental defects in zebrafish (Danio rerio) at environmentally relevant dioxin (TCDD) concentrations. Toxicol. Sci. 76, 392–399 10.1093/toxsci/kfg241 [DOI] [PubMed] [Google Scholar]
  27. Howe K., Clark M. D., Torroja C. F., Torrance J., Berthelot C., Muffato M., et al. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503 10.1038/nature12111 [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hwang W. Y., Fu Y., Reyon D., Maeder M. L., Tsai S. Q., Sander J. D., et al. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227–229 10.1038/nbt.2501 [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kawakami K., Shima A. (1999). Identification of the Tol2 transposase of the medaka fish Oryzias latipes that catalyzes excision of a nonautonomous Tol2 element in zebrafish Danio rerio. Gene 240, 239–244 [DOI] [PubMed] [Google Scholar]
  30. Kubo F., Hablitzel B., Dal Maschio M., Driever W., Baier H., Arrenberg A. B. (2014). Functional architecture of an optic flow-responsive area that drives horizontal eye movements in zebrafish. Neuron 81, 1344–1359 10.1016/j.neuron.2014.02.043 [DOI] [PubMed] [Google Scholar]
  31. Lam C. S., Korzh V., Strahle U. (2005). Zebrafish embryos are susceptible to the dopaminergic neurotoxin MPTP. Eur. J. Neurosci. 21, 1758–1762 10.1111/j.1460-9568.2005.03988.x [DOI] [PubMed] [Google Scholar]
  32. Marvin J. S., Borghuis B. G., Tian L., Cichon J., Harnett M. T., Akerboom J., et al. (2013). An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods 10, 162–170 10.1038/nmeth.2333 [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mathuru A. S., Kibat C., Cheong W. F., Shui G., Wenk M. R., Friedrich R. W., et al. (2012). Chondroitin fragments are odorants that trigger fear behavior in fish. Curr. Biol. 22, 538–544 10.1016/j.cub.2012.01.061 [DOI] [PubMed] [Google Scholar]
  34. Meyer A., Schartl M. (1999). Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr. Opin. Cell Biol. 11, 699–704 [DOI] [PubMed] [Google Scholar]
  35. Miklósi A., Andrew R. J. (2006). The zebrafish as a model for behavioral studies. Zebrafish 3, 227–234 10.1089/zeb.2006.3.227 [DOI] [PubMed] [Google Scholar]
  36. Miri A., Daie K., Arrenberg A. B., Baier H., Aksay E., Tank D. W. (2011). Spatial gradients and multidimensional dynamics in a neural integrator circuit. Nat. Neurosci. 14, 1150–1159 10.1038/nn.2888 [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Mueller K. P., Neuhauss S. C. F. (2010). Quantitative measurements of the optokinetic response in adult fish. J. Neurosci. Methods 186, 29–34 10.1016/j.jneumeth.2009.10.020 [DOI] [PubMed] [Google Scholar]
  38. Naumann E. A., Kampff A. R., Prober D. A., Schier A. F., Engert F. (2010). Monitoring neural activity with bioluminescence during natural behavior. Nat. Neurosci. 13, 513–520 10.1038/nn.2518 [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Neuhauss S. C. F. (2003). Behavioral genetic approaches to visual system development and function in zebrafish. J. Neurobiol. 54, 148–160 10.1002/neu.10165 [DOI] [PubMed] [Google Scholar]
  40. Newman M., Musgrave I. F., Musgrave F. I., Lardelli M. (2007). Alzheimer disease: amyloidogenesis, the presenilins and animal models. Biochim. Biophys. Acta 1772, 285–297 10.1016/j.bbadis.2006.12.001 [DOI] [PubMed] [Google Scholar]
  41. Newman M., Verdile G., Martins R. N., Lardelli M. (2011). Zebrafish as a tool in Alzheimer's disease research. Biochim. Biophys. Acta 1812, 346–352 10.1016/j.bbadis.2010.09.012 [DOI] [PubMed] [Google Scholar]
  42. Norton W. H. J. (2013). Toward developmental models of psychiatric disorders in zebrafish. Front. Neural Circuits 7:79 10.3389/fncir.2013.00079 [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Oliveira R. F. (2013). Mind the fish: zebrafish as a model in cognitive social neuroscience. Front. Neural Circuits 7:131 10.3389/fncir.2013.00131 [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Olszewski J., Haehnel M., Taguchi M., Liao J. C. (2012). Zebrafish larvae exhibit rheotaxis and can escape a continuous suction source using their lateral line. PLoS ONE 7:e36661 10.1371/journal.pone.0036661 [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Orger M. B., Smear M. C., Anstis S. M., Baier H. (2000). Perception of Fourier and non-Fourier motion by larval zebrafish. Nat. Neurosci. 3, 1128–1133 10.1038/80649 [DOI] [PubMed] [Google Scholar]
  46. Panier T., Romano S. A., Olive R., Pietri T., Sumbre G., Candelier R., et al. (2013). Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy. Front. Neural Circuits 7:65 10.3389/fncir.2013.00065 [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Pietri T., Roman A.-C., Guyon N., Romano S. A., Washbourne P., Moens C. B., et al. (2013). The first mecp2-null zebrafish model shows altered motor behaviors. Front. Neural Circuits 7:118 10.3389/fncir.2013.00118 [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Portugues R., Engert F. (2009). The neural basis of visual behaviors in the larval zebrafish. Curr. Opin. Neurobiol. 19, 644–647 10.1016/j.conb.2009.10.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Portugues R., Feierstein C. E., Engert F., Orger M. B. (2014). Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior. Neuron 81, 1328–1343 10.1016/j.neuron.2014.01.019 [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Quirin S., Peterka D. S., Yuste R. (2013). Instantaneous three-dimensional sensing using spatial light modulator illumination with extended depth of field imaging. Opt. Express 21, 16007–16021 10.1364/OE.21.016007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Ramirez I. B.-R., Pietka G., Jones D. R., Divecha N., Alia A., Baraban S. C., et al. (2012). Impaired neural development in a zebrafish model for Lowe syndrome. Hum. Mol. Genet. 21, 1744–1759 10.1093/hmg/ddr608 [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Rinner O., Rick J. M., Neuhauss S. C. F. (2005). Contrast sensitivity, spatial and temporal tuning of the larval zebrafish optokinetic response. Invest. Ophthalmol. Vis. Sci. 46, 137–142 10.1167/iovs.04-0682 [DOI] [PubMed] [Google Scholar]
  53. Roberts A. C., Bill B. R., Glanzman D. L. (2013). Learning and memory in zebrafish larvae. Front. Neural Circuits 7:126 10.3389/fncir.2013.00126 [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Sager J. J., Bai Q., Burton E. A. (2010). Transgenic zebrafish models of neurodegenerative diseases. Brain Struct. Funct. 214, 285–302 10.1007/s00429-009-0237-1 [DOI] [PubMed] [Google Scholar]
  55. Sander J. D., Cade L., Khayter C., Reyon D., Peterson R. T., Joung J. K., et al. (2011). Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat. Biotechnol. 29, 697–698 10.1038/nbt.1934 [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Schiffer N. W., Broadley S. A., Hirschberger T., Tavan P., Kretzschmar H. A., Giese A., et al. (2007). Identification of anti-prion compounds as efficient inhibitors of polyglutamine protein aggregation in a zebrafish model. J. Biol. Chem. 282, 9195–9203 10.1074/jbc.M607865200 [DOI] [PubMed] [Google Scholar]
  57. Scott E. K., Mason L., Arrenberg A. B., Ziv L., Gosse N. J., Xiao T., et al. (2007). Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat. Methods 4, 323–326 10.1038/nmeth1033 [DOI] [PubMed] [Google Scholar]
  58. Valente A., Huang K.-H., Portugues R., Engert F. (2012). Ontogeny of classical and operant learning behaviors in zebrafish. Learn. Mem. 19, 170–177 10.1101/lm.025668.112 [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Vaziri A., Emiliani V. (2012). Reshaping the optical dimension in optogenetics. Curr. Opin. Neurobiol. 22, 128–137 10.1016/j.conb.2011.11.011 [DOI] [PubMed] [Google Scholar]
  60. Wienholds E., van Eeden F., Kosters M., Mudde J., Plasterk R. H. A., Cuppen E. (2003). Efficient target-selected mutagenesis in zebrafish. Genome Res. 13, 2700–2707 10.1101/gr.1725103 [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Wu C., Sharma K., Laster K., Hersi M., Torres C., Lukas T. J., et al. (2014). Kcnq1-5 (Kv7.1-5) potassium channel expression in the adult zebrafish. BMC Physiol. 14:1 10.1186/1472-6793-14-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Wyart C., Del Bene F., Warp E., Scott E. K., Trauner D., Baier H., et al. (2009). Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature 461, 407–410 10.1038/nature08323 [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Frontiers in Neural Circuits are provided here courtesy of Frontiers Media SA

RESOURCES