Abstract
When rats are fed a selenium-deficient diet, the glutathione peroxidase activity in liver mitochondria decreases within 5 weeks to 0-6% of that of control animals fed on a diet supplemented with 0.5 ppm of selenium as sodium selenite. Analysis of the temperature dependence of energy-linked Ca2+ uptake by means of Arrhenius plots reveals two breaks (at around 11°C and 24°C) in mitochondria isolated from selenium-supplemented animals, whereas in selenium-deficient rats the break at 11°C is absent. Ca2+-loaded mitochondria of selenium-supplemented rats—i.e., with active glutathione peroxidase in the matrix—lose Ca2+ rapidly, with a concomitant oxidation of endogenous NAD(P)H, when exposed to t-butyl hydroperoxide or H2O2. In contrast, in selenium deficiency, t-butyl hydroperoxide and H2O2 induce neither a release of Ca2+ nor an oxidation of NAD(P)H. The peroxide-induced oxidation of NAD(P)H is reversible in the presence of succinate when no Ca2+ has been taken up. When Ca2+ has previously been accumulated, however, the oxidation of NAD(P)H is irreversible. Enzymatic analysis of mitochondrial pyridine nucleotides reveals that the peroxide-induced oxidation of NAD(P)H in Ca2+-loaded mitochondria leads to a loss of NAD+ and NADP+. It is proposed that the redox state of mitochondrial pyridine nucleotides can be or is in part controlled by glutathione peroxidase and glutathione reductase and is a factor in the balance of Ca2+ between mitochondria and medium.
Keywords: glutathione peroxidase, selenium, calcium release
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boveris A., Oshino N., Chance B. The cellular production of hydrogen peroxide. Biochem J. 1972 Jul;128(3):617–630. doi: 10.1042/bj1280617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burk R. F., Masters B. S. Some effects of selenium deficiency on the hepatic microsomal cytochrome P-450 system in the rat. Arch Biochem Biophys. 1975 Sep;170(1):124–131. doi: 10.1016/0003-9861(75)90103-4. [DOI] [PubMed] [Google Scholar]
- Caroni P., Schwerzmann K., Carafoli E. Separate pathways for Ca2+ uptake and release in liver mitochondria. FEBS Lett. 1978 Dec 15;96(2):339–342. doi: 10.1016/0014-5793(78)80431-1. [DOI] [PubMed] [Google Scholar]
- Chan T. L., Greenawalt J. W., Pedersen P. L. Biochemical and ultrastructural properties of a mitochondrial inner membrane fraction deficient in outer membrane and matrix activities. J Cell Biol. 1970 May;45(2):291–305. doi: 10.1083/jcb.45.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chance B., Oshino N. Kinetics and mechanisms of catalase in peroxisomes of the mitochondrial fraction. Biochem J. 1971 Apr;122(2):225–233. doi: 10.1042/bj1220225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chudapongse P. Further studies on the effect of phosphoenolpyruvate on respiration-dependent calcium transport by rat heart mitochondria. Biochim Biophys Acta. 1976 Feb 16;423(2):196–202. doi: 10.1016/0005-2728(76)90178-x. [DOI] [PubMed] [Google Scholar]
- Chudapongse P., Haugaard N. The effect of phosphoenolpyruvate on calcium transport by mitochondria. Biochim Biophys Acta. 1973 May 25;307(3):599–606. doi: 10.1016/0005-2736(73)90304-0. [DOI] [PubMed] [Google Scholar]
- Crompton M., Moser R., Lüdi H., Carafoli E. The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues. Eur J Biochem. 1978 Jan 2;82(1):25–31. doi: 10.1111/j.1432-1033.1978.tb11993.x. [DOI] [PubMed] [Google Scholar]
- Dobretsov G. E., Borschevskaya T. A., Petrov V. A., Vladimirov Y. A. The increase of phospholipid bilayer rigidity after lipid peroxidation. FEBS Lett. 1977 Dec 1;84(1):125–128. doi: 10.1016/0014-5793(77)81071-5. [DOI] [PubMed] [Google Scholar]
- Flohé L., Schlegel W. Glutathion-Peroxidase. IV. Intrazelluläre Verteilung des Glutathion-Peroxidase-Systems in der Rattenleber. Hoppe Seylers Z Physiol Chem. 1971 Oct;352(10):1401–1410. [PubMed] [Google Scholar]
- Hatefi Y., Hanstein W. G. Lipid oxidation in biological membranes. I. Lipid oxidation in submitochondrial particles and microsomes induced by chaotropic agents. Arch Biochem Biophys. 1970 May;138(1):73–86. doi: 10.1016/0003-9861(70)90286-9. [DOI] [PubMed] [Google Scholar]
- KLINGENBERG M., SLENCZKA W. [Pyridine nucleotide in liver mitochondria. An analysis of their redox relationships]. Biochem Z. 1959;331:486–517. [PubMed] [Google Scholar]
- Lawrence R. A., Burk R. F. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun. 1976 Aug 23;71(4):952–958. doi: 10.1016/0006-291x(76)90747-6. [DOI] [PubMed] [Google Scholar]
- Lawrence R. A., Burk R. F. Species, tissue and subcellular distribution of non Se-dependent glutathione peroxidase activity. J Nutr. 1978 Feb;108(2):211–215. doi: 10.1093/jn/108.2.211. [DOI] [PubMed] [Google Scholar]
- Lehninger A. L., Carafoli E., Rossi C. S. Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967;29:259–320. doi: 10.1002/9780470122747.ch6. [DOI] [PubMed] [Google Scholar]
- Lehninger A. L., Vercesi A., Bababunmi E. A. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1690–1694. doi: 10.1073/pnas.75.4.1690. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loschen G., Azzi A., Richter C., Flohé L. Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett. 1974 May 15;42(1):68–72. doi: 10.1016/0014-5793(74)80281-4. [DOI] [PubMed] [Google Scholar]
- Loschen G., Flohé L., Chance B. Respiratory chain linked H(2)O(2) production in pigeon heart mitochondria. FEBS Lett. 1971 Nov 1;18(2):261–264. doi: 10.1016/0014-5793(71)80459-3. [DOI] [PubMed] [Google Scholar]
- Malmström K., Carafoli E. Effects of prostaglandins on the interaction of Ca2+ with mitochondria. Arch Biochem Biophys. 1975 Dec;171(2):418–423. doi: 10.1016/0003-9861(75)90050-8. [DOI] [PubMed] [Google Scholar]
- Pozzan T., Bragadin M., Azzone G. F. Disequilibrium between steady-state Ca2+ accumulation ratio and membrane potential in mitochondria. Pathway and role of Ca2+ efflux. Biochemistry. 1977 Dec 13;16(25):5618–5625. doi: 10.1021/bi00644a036. [DOI] [PubMed] [Google Scholar]
- Roos I., Crompton M., Carafoli E. The effect of phosphoenolpyruvate on the retention of calcium by liver mitochondria. FEBS Lett. 1978 Oct 15;94(2):418–421. doi: 10.1016/0014-5793(78)80990-9. [DOI] [PubMed] [Google Scholar]
- Rottenberg H., Scarpa A. Calcium uptake and membrane potential in mitochondria. Biochemistry. 1974 Nov 5;13(23):4811–4817. doi: 10.1021/bi00720a020. [DOI] [PubMed] [Google Scholar]
- Scarpa A., de Gier J. Cation permeability of liposomes as a function of the chemical composition of the lipid bilayers. Biochim Biophys Acta. 1971 Sep 14;241(3):789–797. doi: 10.1016/0005-2736(71)90006-x. [DOI] [PubMed] [Google Scholar]
- Sies H., Moss K. M. A role of mitochondrial glutathione peroxidase in modulating mitochondrial oxidations in liver. Eur J Biochem. 1978 Mar 15;84(2):377–383. doi: 10.1111/j.1432-1033.1978.tb12178.x. [DOI] [PubMed] [Google Scholar]
- Vinogradov A., Scarpa A., Chance B. Calcium and pyridine nucleotide interaction in mitochondrial membranes. Arch Biochem Biophys. 1972 Oct;152(2):646–654. doi: 10.1016/0003-9861(72)90261-5. [DOI] [PubMed] [Google Scholar]
- Zakowski J. J., Tappel A. L. Purification and properties of rat liver mitochondrial glutathione peroxidase. Biochim Biophys Acta. 1978 Sep 11;526(1):65–76. doi: 10.1016/0005-2744(78)90290-5. [DOI] [PubMed] [Google Scholar]
- Zimmermann R., Flohé L., Weser U., Hartmann H. J. Inhibition of lipid peroxidation in isolated inner membrane of rat liver mitochondria by superoxide dismutase. FEBS Lett. 1973 Jan 15;29(2):117–120. doi: 10.1016/0014-5793(73)80539-3. [DOI] [PubMed] [Google Scholar]