Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Sep;76(9):4421–4424. doi: 10.1073/pnas.76.9.4421

Filament interaction in intact muscle fibers monitored by light scattering.

G M Katz, A Mozo, J P Reuben
PMCID: PMC411587  PMID: 291974

Abstract

Measurement of changes in optical properties of intact muscle fibers during contraction has proven to be difficult or, in some cases, impossible due to movement of the muscle relative to the incident beam. In this paper we describe a technique for immobilizing single fibers in clear gelatin, which permits measurement of light scattering signals undistorted by movement artifacts. We also describe the phase and amplitude relationship between changes in intensity of light scattering (at 90 degrees to incident beam) and tensions induced by electrically activating single fibers. With tensions that range up to 50% Po (Po = maximal tension measured by exposure of fibers to 200 mM K+), the maximal increase in light scattering is about 25% of that for resting fibers. The scattering increase precedes tension, and at low temperatures the interval between the two peaks can be 50--100 msec. We interpret these data on intact fibers, as we did our earlier data from studied on skinned fibers, as indicating that increases in light scattering power of muscle are primarily due to attachment of myosin cross-bridges to actin filaments.

Full text

PDF
4421

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baylor S. M., Oetliker H. A large birefringence signal preceding contraction in single twitch fibres of the frog. J Physiol. 1977 Jan;264(1):141–162. doi: 10.1113/jphysiol.1977.sp011661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blinks J. R., Rüdel R., Taylor S. R. Calcium transients in isolated amphibian skeletal muscle fibres: detection with aequorin. J Physiol. 1978 Apr;277:291–323. doi: 10.1113/jphysiol.1978.sp012273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FATT P., KATZ B. The electrical properties of crustacean muscle fibres. J Physiol. 1953 Apr 28;120(1-2):171–204. doi: 10.1113/jphysiol.1953.sp004884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. GIRARDIER L., REUBEN J. P., BRANDT P. W., GRUNDFEST H. EVIDENCE FOR ANION-PERMSELECTIVE MEMBRANE IN CRAYFISH MUSCLE FIBERS AND ITS POSSIBLE ROLE IN EXCITATION-CONTRACTION COUPLING. J Gen Physiol. 1963 Sep;47:189–214. doi: 10.1085/jgp.47.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. González-Serratos H. Inward spread of activation in vertebrate muscle fibres. J Physiol. 1971 Feb;212(3):777–799. doi: 10.1113/jphysiol.1971.sp009356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Huxley A. F. Muscular contraction. J Physiol. 1974 Nov;243(1):1–43. [PMC free article] [PubMed] [Google Scholar]
  7. Julian F. J., Moss R. L. The concept of active state in striated muscle. Circ Res. 1976 Feb;38(2):53–59. doi: 10.1161/01.res.38.2.53. [DOI] [PubMed] [Google Scholar]
  8. Katz G. M., Sorenson M. M., Reuben J. P. Filament interaction monitored by light scattering in skinned fibers. J Gen Physiol. 1978 Nov;72(5):651–665. doi: 10.1085/jgp.72.5.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kawai M., Brandt P., Orentlicher M. Dependence of energy transduction in intact skeletal muscles on the time in tension. Biophys J. 1977 May;18(2):161–172. doi: 10.1016/S0006-3495(77)85605-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lymn R. W., Taylor E. W. Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry. 1971 Dec 7;10(25):4617–4624. doi: 10.1021/bi00801a004. [DOI] [PubMed] [Google Scholar]
  11. Matsubara I., Yagi N. A time-resolved X-ray diffraction study of muscle during twitch. J Physiol. 1978 May;278:297–307. doi: 10.1113/jphysiol.1978.sp012305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Reuben J. P., Brandt P. W., Garcia H., Grundfest H. Excitation-contraction coupling in crayfish. Am Zool. 1967 Aug;7(3):623–645. doi: 10.1093/icb/7.3.623. [DOI] [PubMed] [Google Scholar]
  13. Suarez-Kurtz G., Parker I. Birefringence signals and calcium transients in skeletal muscle. Nature. 1977 Dec 22;270(5639):746–748. doi: 10.1038/270746a0. [DOI] [PubMed] [Google Scholar]
  14. Weber A., Murray J. M. Molecular control mechanisms in muscle contraction. Physiol Rev. 1973 Jul;53(3):612–673. doi: 10.1152/physrev.1973.53.3.612. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES