Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Sep;76(9):4451–4454. doi: 10.1073/pnas.76.9.4451

Differentiation of 3T3-L2 fibroblasts into adipose cells in bromodeoxyuridine-suppressed cultures.

T R Russell
PMCID: PMC411594  PMID: 92030

Abstract

Growth of 3T3-L2 fibroblasts in medium containing 5-bromo-2'-deoxyuridine prevents the spontaneous cytodifferentiation of these cells into adipose cells. Treatment of bromodeoxyuridine-suppressed cultures at confluence with 1-methyl-3-isobutylxanthine, a promoter of the adipose conversion, results in differentiation of the fibroblasts into adipose cells but the extent of the conversion is less than that seen in cultures not treated with bromodeoxyuridine. 1-Methyl-3-isobutylxanthine appears to function without altering the amount of bromodeoxyuridine present in DNA.

Full text

PDF
4451

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chang T. H., Polakis S. E. Differentiation of 3T3-L1 fibroblasts to adipocytes. Effect of insulin and indomethacin on the levels of insulin receptors. J Biol Chem. 1978 Jul 10;253(13):4693–4696. [PubMed] [Google Scholar]
  2. Davidson R. L., Kaufman E. R. Deoxycytidine reverses the suppression of pigmentation caused by 5-BrdUrd without changing the amount of 5-BrdUrd in DNA. Cell. 1977 Dec;12(4):923–929. doi: 10.1016/0092-8674(77)90156-8. [DOI] [PubMed] [Google Scholar]
  3. Eckel R. H., Fujimoto W. Y., Brunzell J. D. Development of lipoprotein lipase in cultured 3T3-L1 cells. Biochem Biophys Res Commun. 1977 Sep 9;78(1):288–293. doi: 10.1016/0006-291x(77)91252-9. [DOI] [PubMed] [Google Scholar]
  4. Gordon J. S., Bell G. I., Martinson H. C., Rutter W. J. Selective interaction of 5'-bromodeoxyuridine substituted DNA with different chromosomal proteins. Biochemistry. 1976 Nov 2;15(22):4778–4785. doi: 10.1021/bi00667a005. [DOI] [PubMed] [Google Scholar]
  5. Green H., Kehinde O. An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell. 1975 May;5(1):19–27. doi: 10.1016/0092-8674(75)90087-2. [DOI] [PubMed] [Google Scholar]
  6. Green H., Meuth M. An established pre-adipose cell line and its differentiation in culture. Cell. 1974 Oct;3(2):127–133. doi: 10.1016/0092-8674(74)90116-0. [DOI] [PubMed] [Google Scholar]
  7. Green H., Meuth M. An established pre-adipose cell line and its differentiation in culture. Cell. 1974 Oct;3(2):127–133. doi: 10.1016/0092-8674(74)90116-0. [DOI] [PubMed] [Google Scholar]
  8. Kuri-Harcuch W., Green H. Increasing activity of enzymes on pathway of triacylglycerol synthesis during adipose conversion of 3T3 cells. J Biol Chem. 1977 Mar 25;252(6):2158–2160. [PubMed] [Google Scholar]
  9. Mackall J. C., Lane M. D. Role of pyruvate carboxylase in fatty acid synthesis: alterations during preadipocyte differentiation. Biochem Biophys Res Commun. 1977 Dec 7;79(3):720–725. doi: 10.1016/0006-291x(77)91171-8. [DOI] [PubMed] [Google Scholar]
  10. Mackall J. C., Student A. K., Polakis S. E., Lane M. D. Induction of lipogenesis during differentiation in a "preadipocyte" cell line. J Biol Chem. 1976 Oct 25;251(20):6462–6464. [PubMed] [Google Scholar]
  11. Meuth M., Green H. Induction of a deoxycytidineless state in cultured mammalian cells by bromodeoxyuridine. Cell. 1974 Jun;2(2):109–112. doi: 10.1016/0092-8674(74)90099-3. [DOI] [PubMed] [Google Scholar]
  12. Reed B. C., Kaufmann S. H., Mackall J. C., Student A. K., Lane M. D. Alterations in insulin binding accompanying differentiation of 3T3-L1 preadipocytes. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4876–4880. doi: 10.1073/pnas.74.11.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rosen O. M., Smith C. J., Fung C., Rubin C. S. Development of hormone receptors and hormone responsiveness in vitro. Effect of prolonged insulin treatment on hexose uptake in 3T3-L1 adipocytes. J Biol Chem. 1978 Oct 25;253(20):7579–7583. [PubMed] [Google Scholar]
  14. Rubin C. S., Hirsch A., Fung C., Rosen O. M. Development of hormone receptors and hormonal responsiveness in vitro. Insulin receptors and insulin sensitivity in the preadipocyte and adipocyte forms of 3T3-L1 cells. J Biol Chem. 1978 Oct 25;253(20):7570–7578. [PubMed] [Google Scholar]
  15. Rubin C. S., Lai E., Rosen O. M. Acquisition of increased hormone sensitivity during in vitro adipocyte development. J Biol Chem. 1977 May 25;252(10):3554–3557. [PubMed] [Google Scholar]
  16. Russell T. R., Ho R. Conversion of 3T3 fibroblasts into adipose cells: triggering of differentiation by prostaglandin F2alpha and 1-methyl-3-isobutyl xanthine. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4516–4520. doi: 10.1073/pnas.73.12.4516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rutter W. J., Pictet R. L., Morris P. W. Toward molecular mechanisms of developmental processes. Annu Rev Biochem. 1973;42:601–646. doi: 10.1146/annurev.bi.42.070173.003125. [DOI] [PubMed] [Google Scholar]
  18. Schwartz S. A. Rat embryo nonhistone chromosomal proteins: interaction in vitro with normal and bromodeoxyuridine-substituted DNA. Biochemistry. 1977 Sep 6;16(18):4101–4108. doi: 10.1021/bi00637a025. [DOI] [PubMed] [Google Scholar]
  19. Stellwagen R. H., Tomkins G. M. Preferential inhibition by 5-bromodeoxyuridine of the synthesis of tyrosine aminotransferase in hepatoma cell cultures. J Mol Biol. 1971 Feb 28;56(1):167–182. doi: 10.1016/0022-2836(71)90092-1. [DOI] [PubMed] [Google Scholar]
  20. Walther B. T., Pictet R. L., David J. D., Rutter W. J. On the mechanism of 5-bromodeoxyuridine inhibition of exocrine pancreas differentiation. J Biol Chem. 1974 Mar 25;249(6):1953–1964. [PubMed] [Google Scholar]
  21. Wise L. S., Green H. Studies of lipoprotein lipase during the adipose conversion of 3T3 cells. Cell. 1978 Feb;13(2):233–242. doi: 10.1016/0092-8674(78)90192-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES