Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Nov;76(11):5529–5533. doi: 10.1073/pnas.76.11.5529

Control of phosphoenolpyruvate-dependent phosphotransferase-mediated sugar transport in Escherichia coli by energization of the cell membrane.

E Reider, E F Wagner, M Schweiger
PMCID: PMC411682  PMID: 392504

Abstract

The phosphoenolpyruvate-dependent phosphotransferase-mediated sugar transport in Escherichia coli is inhibited by the energized of the membrane. This was shown in intact cells as well as in membrane vesicles. Relaxation of the proton gradient by uncouplers stimulated the uptake of sugars via the phosphotransferase system in aerobically cultured cells. No such effect was seen in anaerobic cells, apparently because the cell membrane of these cells is poorly energized. Energization by respiration of D-lactate or ascorbate inhibited the phosphotransferase uptake system in membrane vesicles. This inhibition was reversed by the addition of cyanide. Oxamate, a specific inhibitor of lactate dehydrogenase, prevented the inhibitory effect of D-lactate. Membrane vesicles prepared from a cytochrome-less mutant were not energized by D-lactate oxidation and the phosphotransferase uptake system was not inhibited.

Full text

PDF
5529

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen H. C. Probes of membrane structure. Annu Rev Biochem. 1978;47:359–383. doi: 10.1146/annurev.bi.47.070178.002043. [DOI] [PubMed] [Google Scholar]
  2. Campo F. F., Hernández-Asensio M., Ramírez J. M. Transport of alpha-methyl glucoside in mutants of Escherichia coli K12 deficient in Ca2+, Mg2+-activated adenosine triphosphatase. Biochem Biophys Res Commun. 1975 Apr 21;63(4):1099–1105. doi: 10.1016/0006-291x(75)90682-8. [DOI] [PubMed] [Google Scholar]
  3. Gilchrist M. J., Konisky J. Effects of colicin Ia on transport and respiration in Escherichia coli. J Biol Chem. 1975 Apr 10;250(7):2457–2462. [PubMed] [Google Scholar]
  4. HILL R. F. A radiation-sensitive mutant of Escherichia coli. Biochim Biophys Acta. 1958 Dec;30(3):636–637. doi: 10.1016/0006-3002(58)90112-4. [DOI] [PubMed] [Google Scholar]
  5. Haddock B. A., Schairer H. U. Electron-transport chains of Escherichia coli. Reconstitution of respiration in a 5-aminolaevulinic acid-requiring mutant. Eur J Biochem. 1973 May;35(1):34–45. doi: 10.1111/j.1432-1033.1973.tb02806.x. [DOI] [PubMed] [Google Scholar]
  6. Kaback H. R. The role of the phosphoenolpyruvate-phosphotransferase system in the transport of sugars by isolated membrane preparations of Escherichia coli. J Biol Chem. 1968 Jul 10;243(13):3711–3724. [PubMed] [Google Scholar]
  7. Kaback H. R. Transport in isolated bacterial membrane vesicles. Methods Enzymol. 1974;31:698–709. doi: 10.1016/0076-6879(74)31075-0. [DOI] [PubMed] [Google Scholar]
  8. Klein W. L., Boyer P. D. Energization of active transport by Escherichia coli. J Biol Chem. 1972 Nov 25;247(22):7257–7265. [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Peterkofsky A., Gazdar C. Interaction of enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system with adenylate cyclase of Escherichia coli. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2920–2924. doi: 10.1073/pnas.72.8.2920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Plate C. A., Suit J. L., Jetten A. M., Luria S. E. Effects of colicin K on a mutant of Escherichia coli deficient in Ca 2+, Mg 2+-activated adenosine triphosphatase. J Biol Chem. 1974 Oct 10;249(19):6138–6143. [PubMed] [Google Scholar]
  12. Saier M. H., Jr Bacterial phosphoenolpyruvate: sugar phosphotransferase systems: structural, functional, and evolutionary interrelationships. Bacteriol Rev. 1977 Dec;41(4):856–871. doi: 10.1128/br.41.4.856-871.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schairer H. U., Friedl P., Schmid B. I., Vogel G. The use of several energy-coupling reactions in characterizing mutants of Escherichia coli K12 defective in oxidative phosphorylation. Eur J Biochem. 1976 Jul 1;66(2):257–268. doi: 10.1111/j.1432-1033.1976.tb10515.x. [DOI] [PubMed] [Google Scholar]
  14. Tarmy E. M., Kaplan N. O. Kinetics of Escherichia coli B D-lactate dehydrogenase and evidence for pyruvate-controlled change in conformation. J Biol Chem. 1968 May 25;243(10):2587–2596. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES