Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Nov;76(11):5731–5735. doi: 10.1073/pnas.76.11.5731

Epidermal growth factor stimulation of DNA synthesis is potentiated by compounds that inhibit its clustering in coated pits

Frederick R Maxfield 1, Peter J A Davies 1, Lev Klempner 1, Mark C Willingham 1, Ira Pastan 1
PMCID: PMC411724  PMID: 42903

Abstract

We have used inhibitors of receptor-mediated endocytosis to investigate the mechanism and function of epidermal growth factor uptake by cultured cells. When rhodamine-labeled epidermal growth factor is bound to cell surface receptors on confluent monolayers of BALB/c 3T3 cells, it rapidly collects in cell surface clusters and is internalized. The clustering of occupied receptors requires Ca2+ and is inhibited by primary alkylamines; both of these properties are shared by the enzyme transglutaminase (R-glutaminyl-peptide:amine γ-glutamyl-yltransferase, EC 2.3.2.13). In Chinese hamster ovary cell extracts, methylamine inhibits 25-50% of the transglutaminase activity with a Ki of 0.2 mM, and it inhibits the remaining transglutaminase activity with a Ki of 20 mM. Clustering is almost completely inhibited by 10 mM methylamine. The polypeptide antibiotic bacitracin inhibits clustering of rhodamine-labeled epidermal growth factor or α2-macroglobulin at 0.7 mM, and it inhibits approximately 40% of the transglutaminase activity in Chinese hamster ovary cells with a Ki of 0.03 mM. Fluorescent ligands bound to cell surface receptors in the presence of bacitracin form clusters within 30 min after bacitracin is removed from the culture medium. These results indicate that a transglutaminase-like enzyme may be required for the clustering and subsequent internalization of occupied receptors. The effects of 10 mM methylamine and 0.7 mM bacitracin on epidermal growth factor stimulation of DNA synthesis were examined. The stimulation of DNA synthesis by epidermal growth factor was increased 2- to 7-fold in the presence of methylamine or bacitracin. Alone, methylamine or bacitracin increased DNA synthesis 1.1- to 3-fold. The stimulation of DNA synthesis resulting from the simultaneous presence of the hormone and the clustering inhibitor was always greater than the sum of the stimulations produced by the hormone and the clustering inhibitors alone. The potentiation of epidermal growth factor activity by clustering inhibitors suggests that the hormone acts at the cell surface. We propose that rapid internalization of occupied receptors via coated pits may be a mechanism to limit the response to hormones.

Keywords: receptors, endocytosis, amines, bạcitracin, transglutaminase

Full text

PDF
5731

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. G., Brown M. S., Goldstein J. L. Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell. 1977 Mar;10(3):351–364. doi: 10.1016/0092-8674(77)90022-8. [DOI] [PubMed] [Google Scholar]
  2. Birckbichler P. J., Dowben R. M., Matacic S., Loewy A. G. Isopeptide bonds in membrane proteins from eukaryotic cells. Biochim Biophys Acta. 1973 Jan 2;291(1):149–155. doi: 10.1016/0005-2736(73)90070-9. [DOI] [PubMed] [Google Scholar]
  3. Birckbichler P. J., Orr G. R., Conway E., Patterson M. K., Jr Transglutaminase activity in normal and transformed cells. Cancer Res. 1977 May;37(5):1340–1344. [PubMed] [Google Scholar]
  4. Carpenter G., Cohen S. 125I-labeled human epidermal growth factor. Binding, internalization, and degradation in human fibroblasts. J Cell Biol. 1976 Oct;71(1):159–171. doi: 10.1083/jcb.71.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carpenter G., Cohen S. Human epidermal growth factor and the proliferation of human fibroblasts. J Cell Physiol. 1976 Jun;88(2):227–237. doi: 10.1002/jcp.1040880212. [DOI] [PubMed] [Google Scholar]
  6. Cohen S., Carpenter G., Lembach K. J. Interaction of epidermal growth factor (EGF) with cultured fibroblasts. Adv Metab Disord. 1975;8:265–284. doi: 10.1016/b978-0-12-027308-9.50024-x. [DOI] [PubMed] [Google Scholar]
  7. Das M., Fox C. F. Molecular mechanism of mitogen action: processing of receptor induced by epidermal growth factor. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2644–2648. doi: 10.1073/pnas.75.6.2644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Desbuquois B., Krug F., Cuatrecasas P. Inhibitors of glucagon inactivation. Effect on glucagon--receptor interactions and glucagon-stimulated adenylate cyclase activity in liver cell membranes. Biochim Biophys Acta. 1974 Mar 20;343(1):101–120. doi: 10.1016/0304-4165(74)90242-6. [DOI] [PubMed] [Google Scholar]
  9. Folk J. E., Finlayson J. S. The epsilon-(gamma-glutamyl)lysine crosslink and the catalytic role of transglutaminases. Adv Protein Chem. 1977;31:1–133. doi: 10.1016/s0065-3233(08)60217-x. [DOI] [PubMed] [Google Scholar]
  10. Gavin J. R., 3rd, Roth J., Neville D. M., Jr, de Meyts P., Buell D. N. Insulin-dependent regulation of insulin receptor concentrations: a direct demonstration in cell culture. Proc Natl Acad Sci U S A. 1974 Jan;71(1):84–88. doi: 10.1073/pnas.71.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goldstein J. L., Anderson R. G., Brown M. S. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature. 1979 Jun 21;279(5715):679–685. doi: 10.1038/279679a0. [DOI] [PubMed] [Google Scholar]
  12. Gorden P., Carpentier J. L., Cohen S., Orci L. Epidermal growth factor: morphological demonstration of binding, internalization, and lysosomal association in human fibroblasts. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5025–5029. doi: 10.1073/pnas.75.10.5025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Haigler H. T., McKanna J. A., Cohen S. Direct visualization of the binding and internalization of a ferritin conjugate of epidermal growth factor in human carcinoma cells A-431. J Cell Biol. 1979 May;81(2):382–395. doi: 10.1083/jcb.81.2.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jänne J., Pösö H., Raina A. Polyamines in rapid growth and cancer. Biochim Biophys Acta. 1978 Apr 6;473(3-4):241–293. doi: 10.1016/0304-419x(78)90015-x. [DOI] [PubMed] [Google Scholar]
  15. Kahn C. R., Baird K. L., Jarrett D. B., Flier J. S. Direct demonstration that receptor crosslinking or aggregation is important in insulin action. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4209–4213. doi: 10.1073/pnas.75.9.4209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kahn C. R. Membrane receptors for hormones and neurotransmitters. J Cell Biol. 1976 Aug;70(2 Pt 1):261–286. doi: 10.1083/jcb.70.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Le Cam A., Freychet P. Effect of insulin on amino acid transport in isolated rat hepatocytes. Diabetologia. 1978 Aug;15(2):117–123. doi: 10.1007/BF00422256. [DOI] [PubMed] [Google Scholar]
  18. LeCam A., Maxfield F., Willingham M., Pastan I. Insulin stimulation of amino acid transport in isolated rat hepatocytes is independent of hormone internalization. Biochem Biophys Res Commun. 1979 Jun 13;88(3):873–881. doi: 10.1016/0006-291x(79)91490-6. [DOI] [PubMed] [Google Scholar]
  19. Lorand L., Campbell-Wilkes L. K., Cooperstein L. A filter paper assay for transamidating enzymes using radioactive amine substrates. Anal Biochem. 1972 Dec;50(2):623–631. doi: 10.1016/0003-2697(72)90074-7. [DOI] [PubMed] [Google Scholar]
  20. Maxfield F. R., Schlessinger J., Shechter Y., Pastan I., Willingham M. C. Collection of insulin, EGF and alpha2-macroglobulin in the same patches on the surface of cultured fibroblasts and common internalization. Cell. 1978 Aug;14(4):805–810. doi: 10.1016/0092-8674(78)90336-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Maxfield F. R., Willingham M. C., Davies P. J., Pastan I. Amines inhibit the clustering of alpha2-macroglobulin and EGF on the fibroblast cell surface. Nature. 1979 Feb 22;277(5698):661–663. doi: 10.1038/277661a0. [DOI] [PubMed] [Google Scholar]
  22. Miller R. J., Chang K. J., Cuatrecasas P. The metabolic stability of the enkephalins. Biochem Biophys Res Commun. 1977 Feb 21;74(4):1311–1317. doi: 10.1016/0006-291x(77)90585-x. [DOI] [PubMed] [Google Scholar]
  23. Schechter Y., Hernaez L., Schlessinger J., Cuatrecasas P. Local aggregation of hormone-receptor complexes is required for activation by epidermal growth factor. Nature. 1979 Apr 26;278(5707):835–838. doi: 10.1038/278835a0. [DOI] [PubMed] [Google Scholar]
  24. Schlessinger J., Shechter Y., Cuatrecasas P., Willingham M. C., Pastan I. Quantitative determination of the lateral diffusion coefficients of the hormone-receptor complexes of insulin and epidermal growth factor on the plasma membrane of cultured fibroblasts. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5353–5357. doi: 10.1073/pnas.75.11.5353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schlessinger J., Shechter Y., Willingham M. C., Pastan I. Direct visualization of binding, aggregation, and internalization of insulin and epidermal growth factor on living fibroblastic cells. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2659–2663. doi: 10.1073/pnas.75.6.2659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shechter Y., Hernaez L., Cuatrecasas P. Epidermal growth factor: biological activity requires persistent occupation of high-affinity cell surface receptors. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5788–5791. doi: 10.1073/pnas.75.12.5788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shechter Y., Schlessinger J., Jacobs S., Chang K. J., Cuatrecasas P. Fluorescent labeling of hormone receptors in viable cells: preparation and properties of highly fluorescent derivatives of epidermal growth factor and insulin. Proc Natl Acad Sci U S A. 1978 May;75(5):2135–2139. doi: 10.1073/pnas.75.5.2135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Silverstein S. C., Steinman R. M., Cohn Z. A. Endocytosis. Annu Rev Biochem. 1977;46:669–722. doi: 10.1146/annurev.bi.46.070177.003321. [DOI] [PubMed] [Google Scholar]
  29. Stastny M., Cohen S. Epidermal growth factor. IV. The induction of ornithine decarboxylase. Biochim Biophys Acta. 1970 Apr 15;204(2):578–589. [PubMed] [Google Scholar]
  30. Topper Y. J., Oka T., Vonderhaar B. K., Wilchek M. An insulin derivative with biological activity greater than that of native insulin. J Cell Physiol. 1976 Dec;89(4):647–649. doi: 10.1002/jcp.1040890422. [DOI] [PubMed] [Google Scholar]
  31. Willingham M. C., Maxfield F. R., Pastan I. H. alpha 2 Macroglobulin binding to the plasma membrane of cultured fibroblasts. Diffuse binding followed by clustering in coated regions. J Cell Biol. 1979 Sep;82(3):614–625. doi: 10.1083/jcb.82.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Willingham M. C., Pastan I. The visualization of fluorescent proteins in living cells by video intensification microscopy (VIM). Cell. 1978 Mar;13(3):501–507. doi: 10.1016/0092-8674(78)90323-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES