Abstract
Pokeweed antiviral protein (PAP), a 29-kDa protein isolated from Phytolacca americana inhibits translation by catalytically removing a specific adenine residue from the 28S rRNA of eukaryotic ribosomes. PAP has potent antiviral activity against many plant and animal viruses, including human immunodeficiency virus. We describe here development of a positive selection system to isolate PAP mutants with reduced toxicity. In vitro translation in the presence or absence of microsomal membranes shows that PAP is synthesized as a precursor and undergoes at least two different proteolytic processing steps to generate mature PAP. The PAP cDNA was placed under control of the galactose-inducible GAL1 promoter and transformed into Saccharomyces cerevisiae. Induction of PAP expression was lethal to yeast. The PAP expression plasmid was mutagenized and plasmids encoding mutant PAP genes were identified by their failure to kill S. cerevisiae. A number of mutant alleles were sequenced. In one mutant, a point mutation at Glu-177 inactivated enzymatic function in vitro, suggesting that this glutamic acid residue is located at or near the catalytic site. Mutants with either point mutations near the N terminus or a nonsense mutation at residue 237 produced protein that was enzymatically active in vitro, suggesting that the toxicity of PAP is not due solely to enzymatic activity. Toxicity of PAP appears to be a multistep process that involves possibly different domains of the protein.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aron G. M., Irvin J. D. Inhibition of herpes simplex virus multiplication by the pokeweed antiviral protein. Antimicrob Agents Chemother. 1980 Jun;17(6):1032–1033. doi: 10.1128/aac.17.6.1032. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brinkmann U., Pai L. H., FitzGerald D. J., Willingham M., Pastan I. B3(Fv)-PE38KDEL, a single-chain immunotoxin that causes complete regression of a human carcinoma in mice. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8616–8620. doi: 10.1073/pnas.88.19.8616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chaudhary V. K., Jinno Y., FitzGerald D., Pastan I. Pseudomonas exotoxin contains a specific sequence at the carboxyl terminus that is required for cytotoxicity. Proc Natl Acad Sci U S A. 1990 Jan;87(1):308–312. doi: 10.1073/pnas.87.1.308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chaudhary V. K., Jinno Y., FitzGerald D., Pastan I. Pseudomonas exotoxin contains a specific sequence at the carboxyl terminus that is required for cytotoxicity. Proc Natl Acad Sci U S A. 1990 Jan;87(1):308–312. doi: 10.1073/pnas.87.1.308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Endo Y., Tsurugi K., Lambert J. M. The site of action of six different ribosome-inactivating proteins from plants on eukaryotic ribosomes: the RNA N-glycosidase activity of the proteins. Biochem Biophys Res Commun. 1988 Feb 15;150(3):1032–1036. doi: 10.1016/0006-291x(88)90733-4. [DOI] [PubMed] [Google Scholar]
- Frankel A., Schlossman D., Welsh P., Hertler A., Withers D., Johnston S. Selection and characterization of ricin toxin A-chain mutations in Saccharomyces cerevisiae. Mol Cell Biol. 1989 Feb;9(2):415–420. doi: 10.1128/mcb.9.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harley S. M., Beevers H. Ricin inhibition of in vitro protein synthesis by plant ribosomes. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5935–5938. doi: 10.1073/pnas.79.19.5935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartley M. R., Legname G., Osborn R., Chen Z., Lord J. M. Single-chain ribosome inactivating proteins from plants depurinate Escherichia coli 23S ribosomal RNA. FEBS Lett. 1991 Sep 23;290(1-2):65–68. doi: 10.1016/0014-5793(91)81227-y. [DOI] [PubMed] [Google Scholar]
- Hayashi S., Wu H. C. Lipoproteins in bacteria. J Bioenerg Biomembr. 1990 Jun;22(3):451–471. doi: 10.1007/BF00763177. [DOI] [PubMed] [Google Scholar]
- Irvin J. D., Uckun F. M. Pokeweed antiviral protein: ribosome inactivation and therapeutic applications. Pharmacol Ther. 1992;55(3):279–302. doi: 10.1016/0163-7258(92)90053-3. [DOI] [PubMed] [Google Scholar]
- Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim Y., Mlsna D., Monzingo A. F., Ready M. P., Frankel A., Robertus J. D. Structure of a ricin mutant showing rescue of activity by a noncatalytic residue. Biochemistry. 1992 Mar 31;31(12):3294–3296. doi: 10.1021/bi00127a035. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lodge J. K., Kaniewski W. K., Tumer N. E. Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7089–7093. doi: 10.1073/pnas.90.15.7089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lord J. M., Roberts L. M., Robertus J. D. Ricin: structure, mode of action, and some current applications. FASEB J. 1994 Feb;8(2):201–208. [PubMed] [Google Scholar]
- Monzingo A. F., Collins E. J., Ernst S. R., Irvin J. D., Robertus J. D. The 2.5 A structure of pokeweed antiviral protein. J Mol Biol. 1993 Oct 20;233(4):705–715. doi: 10.1006/jmbi.1993.1547. [DOI] [PubMed] [Google Scholar]
- Monzingo A. F., Robertus J. D. X-ray analysis of substrate analogs in the ricin A-chain active site. J Mol Biol. 1992 Oct 20;227(4):1136–1145. doi: 10.1016/0022-2836(92)90526-p. [DOI] [PubMed] [Google Scholar]
- Nicholls P. J., Youle R. J. The structure of diphtheria toxin as a guide to rational design. Targeted Diagn Ther. 1992;7:339–363. [PubMed] [Google Scholar]
- Pelham H. R. The retention signal for soluble proteins of the endoplasmic reticulum. Trends Biochem Sci. 1990 Dec;15(12):483–486. doi: 10.1016/0968-0004(90)90303-s. [DOI] [PubMed] [Google Scholar]
- Ready M. P., Kim Y., Robertus J. D. Site-directed mutagenesis of ricin A-chain and implications for the mechanism of action. Proteins. 1991;10(3):270–278. doi: 10.1002/prot.340100311. [DOI] [PubMed] [Google Scholar]
- Robzyk K., Kassir Y. A simple and highly efficient procedure for rescuing autonomous plasmids from yeast. Nucleic Acids Res. 1992 Jul 25;20(14):3790–3790. doi: 10.1093/nar/20.14.3790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlossman D., Withers D., Welsh P., Alexander A., Robertus J., Frankel A. Role of glutamic acid 177 of the ricin toxin A chain in enzymatic inactivation of ribosomes. Mol Cell Biol. 1989 Nov;9(11):5012–5021. doi: 10.1128/mcb.9.11.5012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomlinson J. A., Walker V. M., Flewett T. H., Barclay G. R. The inhibition of infection by cucumber mosaic virus and influenza virus by extracts from Phytolacca americana. J Gen Virol. 1974 Feb;22(2):225–232. doi: 10.1099/0022-1317-22-2-225. [DOI] [PubMed] [Google Scholar]
- Zarling J. M., Moran P. A., Haffar O., Sias J., Richman D. D., Spina C. A., Myers D. E., Kuebelbeck V., Ledbetter J. A., Uckun F. M. Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+ cells by monoclonal antibodies. Nature. 1990 Sep 6;347(6288):92–95. doi: 10.1038/347092a0. [DOI] [PubMed] [Google Scholar]



