Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Nov;76(11):5967–5971. doi: 10.1073/pnas.76.11.5967

Specific association of neurotransmitter with somatic lysosomes in an identified serotonergic neuron of Aplysia californica.

J H Schwartz, L J Shkolnik, D J Goldberg
PMCID: PMC411774  PMID: 42907

Abstract

Injection of [3H]serotonin directly into the cell body of the giant metacerebral neuron (GCN), an identified serotonergic cell in the Aplysia cerebral ganglion, revealed a striking association of the labeled transmitter with large lysosomes. Most of the [3H]serotonin in the neuron is sequestered by lysosomes, which may function as storage depots for the transmitter. This localization is specific: [3H]serotonin was not found in similar lysosomes in the perikaryon of R2, an identified Aplysia cholinergic neuron. [3H]Dopamine, [3H]histamine, and [3H]-N-acetylgalactosamine injected into the serotonergic neuron were not localized in lysosomes. Because of this specificity, it may be possible to use lysosomal binding of labeled transmitter as a radioautographic method for identifying the transmitter type of a nerve cell body. These organelles are lysosomal in origin because they contain acid phosphatase activity. Moreover, examination of isolated GCN cell bodies by fluorescence microscopy revealed the presence of abundant autofluorescent yellow pigment characteristic of lipofuscin. We suggest that [3H]serotonin labels organelles containing membranes that once were integral components of the serotonergic vesicle. Lysosomes might accumulate the transmitter with a high degree of specificity because they contain membranes, perhaps recycled from the neuron's synaptic terminals, that retain their ability to concentrate and bind serotonin.

Full text

PDF
5967

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambron R. T., Goldman J. E., Thompson E. B., Schwartz J. H. Synthesis of glycoproteins in a single identified neuron of Aplysia californica. J Cell Biol. 1974 Jun;61(3):649–664. doi: 10.1083/jcb.61.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown A. M., Baur P. S., Jr, Tuley F. H., Jr Phototransduction in aplysia neurons: calcium release from pigmented granules is essential. Science. 1975 Apr 11;188(4184):157–160. doi: 10.1126/science.1114346. [DOI] [PubMed] [Google Scholar]
  3. Coggeshall R. E. A light and electron microscope study of the abdominal ganglion of Aplysia californica. J Neurophysiol. 1967 Nov;30(6):1263–1287. doi: 10.1152/jn.1967.30.6.1263. [DOI] [PubMed] [Google Scholar]
  4. Cottrell G. A., Osborne N. N. Subcellular localization of serotonin in an identified serotonin-containing neurone. Nature. 1970 Jan 31;225(5231):470–472. doi: 10.1038/225470a0. [DOI] [PubMed] [Google Scholar]
  5. Das K. C., Abramson M. B., Katzman R. Neuronal pigments: spectroscopic characterization of human brain melanin. J Neurochem. 1978 Mar;30(3):601–605. doi: 10.1111/j.1471-4159.1978.tb07814.x. [DOI] [PubMed] [Google Scholar]
  6. Eisenstadt M., Goldman J. E., Kandel E. R., Koike H., Koester J., Schwartz J. H. Intrasomatic injection of radioactive precursors for studying transmitter synthesis in identified neurons of Aplysia californica. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3371–3375. doi: 10.1073/pnas.70.12.3371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Giller E., Jr, Schwartz J. H. Choline acetyltransferase: regional distribution in the abdominal ganglion of Aplysia. Science. 1968 Aug 30;161(3844):908–911. doi: 10.1126/science.161.3844.908. [DOI] [PubMed] [Google Scholar]
  8. Goldman J. E., Kim K. S., Schwartz J. H. Axonal transport of [3H]serotonin in an identified neuron of Aplysia californica. J Cell Biol. 1976 Aug;70(2 Pt 1):304–318. doi: 10.1083/jcb.70.2.304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goldman J. E., Schwartz J. H. Cellular specificity of serotonin storage and axonal transport in identified neurones of Aplysia californica. J Physiol. 1974 Oct;242(1):61–76. doi: 10.1113/jphysiol.1974.sp010694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goldman J. E., Schwartz J. H. Metabolism of [3H]serotonin in the marine mollusc, Aplysia californica. Brain Res. 1977 Nov 4;136(1):77–88. doi: 10.1016/0006-8993(77)90133-0. [DOI] [PubMed] [Google Scholar]
  11. Henkart M. Light-induced changes in the structure of pigmented granules in aplysia neurons. Science. 1975 Apr 11;188(4184):155–157. doi: 10.1126/science.1114345. [DOI] [PubMed] [Google Scholar]
  12. Holtzman E. The origin and fate of secretory packages, especially synaptic vesicles. Neuroscience. 1977;2(3):327–355. doi: 10.1016/0306-4522(77)90001-x. [DOI] [PubMed] [Google Scholar]
  13. Håkanson R., Owman C., Sporrong B., Sundler F. Electron microscopic classification of amine-producing endocrine cells by selective staining of ultra-thin sections. Histochemie. 1971;27(3):226–242. doi: 10.1007/BF00264395. [DOI] [PubMed] [Google Scholar]
  14. MEEK G. A., LANE N. J. THE ULTRASTRUCTURAL LOCALIZATION OF PHOSPHATASES IN THE NEURONES OF THE SNAIL, HELIX ASPERSA. J R Microsc Soc. 1964 Feb;82:193–204. doi: 10.1111/j.1365-2818.1964.tb05319.x. [DOI] [PubMed] [Google Scholar]
  15. Nolte A., Breucker H., Kuhlmann D. Cytosomale Einschlüsse und Neurosekret im Nervengewebe von Gastropoden. Untersuchungen am Schlundring von Crepidula fornicata L. (Prosobranchier, Gastropoda) Z Zellforsch Mikrosk Anat. 1965 Sep 24;68(1):1–27. [PubMed] [Google Scholar]
  16. Richardson K. C. Electron microscopic identification of autonomic nerve endings. Nature. 1966 May 14;210(5037):756–756. doi: 10.1038/210756a0. [DOI] [PubMed] [Google Scholar]
  17. SIMPSON L., BERN H. A., NISHIOKA R. S. INCLUSIONS IN THE NEURONS OF APLYSIA CALIFORNICA (COOPER, 1863) (GASTROPODA OPISTHOBRANCHIATA). J Comp Neurol. 1963 Oct;121:237–257. doi: 10.1002/cne.901210207. [DOI] [PubMed] [Google Scholar]
  18. Salpeter M. M., Bachmann L., Salpeter E. E. Resolution in electron microscope radioautography. J Cell Biol. 1969 Apr;41(1):1–32. doi: 10.1083/jcb.41.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schwartz J. H. Axonal transport: components, mechanisms, and specificity. Annu Rev Neurosci. 1979;2:467–504. doi: 10.1146/annurev.ne.02.030179.002343. [DOI] [PubMed] [Google Scholar]
  20. Thompson E. B., Schwartz J. H., Kandel E. R. A radioautographic analysis in the light and electron microscope of identified Aplysia neurons and their processes after intrasomatic injection of L-(3H)fucose. Brain Res. 1976 Aug 13;112(2):251–281. doi: 10.1016/0006-8993(76)90283-3. [DOI] [PubMed] [Google Scholar]
  21. Tranzer J. P., Richards J. G. Ultrastructural cytochemistry of biogenic amines in nervous tissue: methodologic improvements. J Histochem Cytochem. 1976 Nov;24(11):1178–1193. doi: 10.1177/24.11.63507. [DOI] [PubMed] [Google Scholar]
  22. Wood J. G. Electron localization of amines in central nervous tissue. Nature. 1966 Mar 12;209(5028):1131–1133. doi: 10.1038/2091131b0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES