Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Nov;76(11):5987–5991. doi: 10.1073/pnas.76.11.5987

Chronic treatment with lithium or desipramine alters discharge frequency and norepinephrine responsiveness of cerebellar Purkinje cells.

G R Siggins, J E Schultz
PMCID: PMC411778  PMID: 230496

Abstract

Cerebellar Purkinje cells were studied by electrophysiological techniques in rats treated chronically with either desipramine (DMI) or lithium chloride given intragastrically. A striking decrement occurred in discharge frequencies of simple spikes and climbing fiber bursts in both groups of animals, similar to the depression produced by iontophoresis of these agents. Chronic treatment with DMI markedly decreased responsiveness to iontophoretically applied norepinephrine (NE), whereas long-term LiCl therapy slightly enhanced response to NE; responses to gamma-aminobutyric acid were unchanged by these treatments. The inhibitory responses to locus ceruleus stimulation were unaffected by chronic LiCl treatment. The effects of these chronic treatments on responsiveness to NE are opposite to the effects these same drugs produce when administered by acute iontophoresis to single cells: DMI then potentiates and LiCl antagonizes noradrenergic responses. These results provide electrophysiological evidence for reciprocal adaptive changes in NE sensitivity, supporting results of biochemical studies.

Full text

PDF
5987

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banerjee S. P., Kung L. S., Riggi S. J., Chanda S. K. Development of beta-adrenergic receptor subsensitivity by antidepressants. Nature. 1977 Aug 4;268(5619):455–456. doi: 10.1038/268455a0. [DOI] [PubMed] [Google Scholar]
  2. Bradshaw C. M., Roberts M. H., Szabadi E. Effects of imipramine and desipramine on responses of single cortical neurones to noradrenaline and 5-hydroxytryptamine. Br J Pharmacol. 1974 Nov;52(3):349–358. doi: 10.1111/j.1476-5381.1974.tb08602.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bunney B. S., Aghajanian G. K. Dopamine and norepinephrine innervated cells in the rat prefrontal cortex: pharmacological differentiation using microiontophoretic techniques. Life Sci. 1976 Dec 1;19(11):1783–1789. doi: 10.1016/0024-3205(76)90087-4. [DOI] [PubMed] [Google Scholar]
  4. Bunney W. E., Jr The current status of research in the catecholamine theories of affective disorders. Psychopharmacol Commun. 1975;1(6):599–609. [PubMed] [Google Scholar]
  5. Carlsson A., Corrodi H., Fuxe K., Hökfelt T. Effect of antidepressant drugs on the depletion of intraneuronal brain 5-hydroxytryptamine stores caused by 4-methyl-alpha-ethyl-meta-tyramine. Eur J Pharmacol. 1969 Mar;5(4):357–366. doi: 10.1016/0014-2999(69)90113-7. [DOI] [PubMed] [Google Scholar]
  6. Dousa T., Hechter O. Lithium and brain adenyl cyclase. Lancet. 1970 Apr 18;1(7651):834–835. doi: 10.1016/s0140-6736(70)92429-3. [DOI] [PubMed] [Google Scholar]
  7. Eisenman G., Krasne S., Ciani S. The kinetic and equilibrium components of selective ionic permeability mediated by nactin- and valinomycin-type carriers having systematically varied degrees of methylation. Ann N Y Acad Sci. 1975 Dec 30;264:34–60. doi: 10.1111/j.1749-6632.1975.tb31474.x. [DOI] [PubMed] [Google Scholar]
  8. Ewart W. R., Logan J. G. The effects of desipramine on the noradrenaline mediated responses in rat cortical cell firing rate [proceedings]. J Physiol. 1978 Mar;276:77P–77P. [PubMed] [Google Scholar]
  9. Forn J., Valdecasas F. G. Effects of lithium on brain adenyl cyclase activity. Biochem Pharmacol. 1971 Oct;20(10):2773–2779. doi: 10.1016/0006-2952(71)90187-0. [DOI] [PubMed] [Google Scholar]
  10. GLOWINSKI J., AXELROD J. INHIBITION OF UPTAKE OF TRITIATED-NORADRENALINE IN THE INTACT RAT BRAIN BY IMIPRAMINE AND STRUCTURALLY RELATED COMPOUNDS. Nature. 1964 Dec 26;204:1318–1319. doi: 10.1038/2041318a0. [DOI] [PubMed] [Google Scholar]
  11. Gallager D. W., Pert A., Bunney W. E., Jr Haloperidol-induced presynaptic dopamine supersensitivity is blocked by chronic lithium. Nature. 1978 May 25;273(5660):309–312. doi: 10.1038/273309a0. [DOI] [PubMed] [Google Scholar]
  12. Garver D. L., Davis J. M. Biogenic amine hypotheses of affective disorders. Life Sci. 1979 Jan 29;24(5):383–394. doi: 10.1016/0024-3205(79)90208-x. [DOI] [PubMed] [Google Scholar]
  13. Hoffer B. J., Siggins G. R., Bloom F. E. Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. II. Sensitivity of Purkinje cells to norepinephrine and related substances administered by microiontophoresis. Brain Res. 1971 Feb 5;25(3):523–534. doi: 10.1016/0006-8993(71)90458-6. [DOI] [PubMed] [Google Scholar]
  14. Hoffer B. J., Siggins G. R., Oliver A. P., Bloom F. E. Activation of the pathway from locus coeruleus to rat cerebellar Purkinje neurons: pharmacological evidence of noradrenergic central inhibition. J Pharmacol Exp Ther. 1973 Mar;184(3):553–569. [PubMed] [Google Scholar]
  15. Hoffer B. J., Siggins G. R., Woodward D. J., Bloom F. E. Spontaneous discharge of Purkinje neurons after destruction of catecholamine-containing afferents by 6-hydroxydopamine. Brain Res. 1971 Jul 23;30(2):425–430. doi: 10.1016/0006-8993(71)90095-3. [DOI] [PubMed] [Google Scholar]
  16. IVERSEN L. L. INHIBITION OF NORADRENALINE UPTAKE BY DRUGS. J Pharm Pharmacol. 1965 Jan;17:62–64. doi: 10.1111/j.2042-7158.1965.tb07572.x. [DOI] [PubMed] [Google Scholar]
  17. KUHN R. The treatment of depressive states with G 22355 (imipramine hydrochloride). Am J Psychiatry. 1958 Nov;115(5):459–464. doi: 10.1176/ajp.115.5.459. [DOI] [PubMed] [Google Scholar]
  18. Knapp S., Mandell A. J. Effects of lithium chloride on parameters biosynthetic capacity for 5-hydroxytryptamin in rat brain. J Pharmacol Exp Ther. 1975 Jun;193(3):812–823. [PubMed] [Google Scholar]
  19. Pandey G. N., Ostrow D. G., Haas M., Dorus E., Casper R. C., Davis J. M., Tosteson D. C. Abnormal lithium and sodium transport in erythrocytes of a manic patient and some members of his family. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3607–3611. doi: 10.1073/pnas.74.8.3607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. ROSENBLATT S., CHANLEY J. D., SOBOTKA H., KAUFMAN M. R. Interrelationships between electroshock, the blood-brain barrier, and catecholamines. J Neurochem. 1960 Feb;5:172–176. doi: 10.1111/j.1471-4159.1960.tb13350.x. [DOI] [PubMed] [Google Scholar]
  21. Rosenblatt J. E., Pert C. B., Tallman J. F., Pert A., Bunney W. E., Jr The effect of imipramine and lithium on alpha- and beta-receptor binding in rat brain. Brain Res. 1979 Jan 5;160(1):186–191. doi: 10.1016/0006-8993(79)90617-6. [DOI] [PubMed] [Google Scholar]
  22. Salmoiraghi G. C., Weight F. Micromethods in neuropharmacology: an approach to the study of anesthetics. Anesthesiology. 1967 Jan-Feb;28(1):54–64. [PubMed] [Google Scholar]
  23. Schou M. Clinical behavioral effects of lithium. Clinical prophylactic effects and clinical pharmacology of lithium. Neurosci Res Program Bull. 1976 Apr;14(2):117–131. [PubMed] [Google Scholar]
  24. Schultz J. Psychoactive drug effects on a system which generates cyclic AMP in brain. Nature. 1976 Jun 3;261(5559):417–418. doi: 10.1038/261417a0. [DOI] [PubMed] [Google Scholar]
  25. Segal M. Lithium and the monoamine neurotransmitters in the rat hippocampus. Nature. 1974 Jul 5;250(461):71–73. doi: 10.1038/250071a0. [DOI] [PubMed] [Google Scholar]
  26. Siggins G. R., Henriksen S. J., Bloom F. Iontophoresis of Li+ antagonizes noradrenergic synaptic inhibition of rat cerebellar Purkinje cells. Proc Natl Acad Sci U S A. 1979 Jun;76(6):3015–3018. doi: 10.1073/pnas.76.6.3015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vetulani J., Stawarz R. J., Dingell J. V., Sulser F. A possible common mechanism of action of antidepressant treatments: reduction in the sensitivity of the noradrenergic cyclic AMP gererating system in the rat limbic forebrain. Naunyn Schmiedebergs Arch Pharmacol. 1976 May;293(2):109–114. doi: 10.1007/BF00499215. [DOI] [PubMed] [Google Scholar]
  28. Vetulani J., Sulser F. Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP-generating system in limbic forebrain. Nature. 1975 Oct 9;257(5526):495–496. doi: 10.1038/257495a0. [DOI] [PubMed] [Google Scholar]
  29. Wolfe B. B., Harden T. K., Sporn J. R., Molinoff P. B. Presynaptic modulation of beta adrenergic receptors in rat cerebral cortex after treatment with antidepressants. J Pharmacol Exp Ther. 1978 Nov;207(2):446–457. [PubMed] [Google Scholar]
  30. de Montigny C., Aghajanian G. K. Tricyclic antidepressants: long-term treatment increases responsivity of rat forebrain neurons to serotonin. Science. 1978 Dec 22;202(4374):1303–1306. doi: 10.1126/science.725608. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES