Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Nov;76(11):6012–6016. doi: 10.1073/pnas.76.11.6012

Interrelationships between ganglionic acetylcholinesterase and nonspecific cholinesterase of the cat and rat.

G B Koelle, K K Rickard, G A Ruch
PMCID: PMC411784  PMID: 293697

Abstract

When homogenates of cat or rat superior cervical ganglia in Krebs-Ringer solution were incubated at 37 degrees C, the ensuing decrease in acetylcholinesterase (acetylcholine acylhydrolase, EC 3.1.1.7) activity was increased significantly by prior administration in vivo of tetramonoisopropylpyrophosphotetramide at doses that produced selective alkylphosphorylation of butyrylcholinesterase or propionylcholinesterase. These findings are consistent with the proposal that the latter enzymes are posttranscriptional precursors of acetylcholinesterase. Results of similar studies with homogenates of ganglia in water or in M NaCl/1% Triton X-100 were inconclusive, as were those of heat-inactivation studies and immunoprecipitation of the enzymes.

Full text

PDF
6012

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson E. D. Acetylcholinesterase in mouse brain, erythrocytes and muscle. J Neurochem. 1977 Mar;28(3):605–615. doi: 10.1111/j.1471-4159.1977.tb10432.x. [DOI] [PubMed] [Google Scholar]
  2. Chan S. L., Gordon M. A., Trevor A. J. Divalent cations and the molecular state of brain acetylcholinesterase (E.C. 3.1.1.7.). Life Sci. 1977 Dec 1;21(11):1611–1616. doi: 10.1016/0024-3205(77)90238-7. [DOI] [PubMed] [Google Scholar]
  3. Chen C. L., Feigelson P. Cycloheximide inhibition of hormonal induction of alpha 2u-globulin mRNA. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2669–2673. doi: 10.1073/pnas.76.6.2669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davis R., Koelle G. B. Electron microscope localization of acetylcholinesterase and butyrylcholinesterase in the superior cervical ganglion of the cat. I. Normal ganglion. J Cell Biol. 1978 Sep;78(3):785–809. doi: 10.1083/jcb.78.3.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  6. Eränkö L. Biochemical and histochemical observations on the postnatal development of cholinesterases in the sympathetic ganglion of the rat. Histochem J. 1972 Nov;4(6):545–559. doi: 10.1007/BF01011133. [DOI] [PubMed] [Google Scholar]
  7. GOODWIN B. C., SIZER I. W. HISTONE REGULATION OF LACTIC DEHYDROGENASE IN EMBRYONIC CHICK BRAIN TISSUE. Science. 1965 Apr 9;148(3667):242–244. doi: 10.1126/science.148.3667.242. [DOI] [PubMed] [Google Scholar]
  8. Gisiger V., Vigny M., Gautron J., Rieger F. Acetylcholinesterase of rat sympathetic ganglion: molecular forms, localization and effects of denervation. J Neurochem. 1978 Mar;30(3):501–516. doi: 10.1111/j.1471-4159.1978.tb07803.x. [DOI] [PubMed] [Google Scholar]
  9. KOELLE G. B. The histochemical identification of acetylcholinesterase in cholinergic, adrenergic and sensory neurons. J Pharmacol Exp Ther. 1955 Jun;114(2):167–184. [PubMed] [Google Scholar]
  10. Koelle G. B., Koelle W. A., Smyrl E. G. Effects of inactivation of butyrylcholinesterase on steady state and regenerating levels of ganglionic acetylcholinesterase. J Neurochem. 1977 Feb;28(2):313–319. doi: 10.1111/j.1471-4159.1977.tb07750.x. [DOI] [PubMed] [Google Scholar]
  11. Koelle W. A., Koelle G. B., Smyrl E. G. Effects of persistent selective suppression of ganglionic butyrylcholinesterase on steady state and regenerating levels of acetylcholinesterase: implications regarding function of butyrylcholinesterase and regulation of protein synthesis. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2936–2938. doi: 10.1073/pnas.73.8.2936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. MYERS D. K. Studies on cholinesterase. 9. Species variation in the specificity pattern of the pseudo cholinesterases. Biochem J. 1953 Aug;55(1):67–79. doi: 10.1042/bj0550067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Somogyi P., Chubb I. W. The recovery of acetylcholinesterase activity in the superior cervical ganglion of the rat following its inhibition by diisopropylphosphorofluoridate: a biochemical and cytochemical study. Neuroscience. 1976;1(5):413–421. doi: 10.1016/0306-4522(76)90134-2. [DOI] [PubMed] [Google Scholar]
  15. Tomkins G. M., Levinson B. B., Baxter J. D., Dethlefsen L. Further evidence for posttranscriptional control of inducible tyrosine aminotransferase synthesis in cultured hepatoma cells. Nat New Biol. 1972 Sep 6;239(88):9–14. doi: 10.1038/newbio239009a0. [DOI] [PubMed] [Google Scholar]
  16. Tomkins G. M., Martin D. W., Jr Hormones and gene expression. Annu Rev Genet. 1970;4:91–106. doi: 10.1146/annurev.ge.04.120170.000515. [DOI] [PubMed] [Google Scholar]
  17. Trevor A. J., Gordon M. A., Parker K. K., Chan S. L. Acetylcholinesterases. Life Sci. 1978 Sep 25;23(12):1209–1220. doi: 10.1016/0024-3205(78)90498-8. [DOI] [PubMed] [Google Scholar]
  18. Vigny M., Gisiger V., Massoulié J. "Nonspecific" cholinesterase and acetylcholinesterase in rat tissues: molecular forms, structural and catalytic properties, and significance of the two enzyme systems. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2588–2592. doi: 10.1073/pnas.75.6.2588. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES