Abstract
A theoretical pathway for the folding of RNase into its native conformation is derived from the contact map computed from crystallographic coordinates. The pathway is based on the hypothesis of Tanaka and Scheraga, according to which localized conformations stabilized by short- and medium-range interactions form before those conformational features that are stabilized primarily by long-range interactions. The pathway deduced from the contact map agrees with experimental information on intermediates detected in the thermal unfolding of RNase and in immunochemical studies on the formation of stable antigenic sites when deduced RNase is oxidized with glutathione. Ambiguities in the interpretation of the contact map are resolved by the combination of structural information contained in the contact map and experimental information.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anfinsen C. B., Scheraga H. A. Experimental and theoretical aspects of protein folding. Adv Protein Chem. 1975;29:205–300. doi: 10.1016/s0065-3233(08)60413-1. [DOI] [PubMed] [Google Scholar]
- Burgess A. W., Scheraga H. A. A hypothesis for the pathway of the thermally-induced unfolding of bovine pancreatic ribonuclease. J Theor Biol. 1975 Sep;53(2):403–420. doi: 10.1016/s0022-5193(75)80012-9. [DOI] [PubMed] [Google Scholar]
- Carlisle C. H., Palmer R. A., Mazumdar S. K., Gorinsky B. A., Yeates D. G. The structure of ribonuclease at 2-5 Angström resolution. J Mol Biol. 1974 May 5;85(1):1–18. doi: 10.1016/0022-2836(74)90125-9. [DOI] [PubMed] [Google Scholar]
- Go N., Taketomi H. Respective roles of short- and long-range interactions in protein folding. Proc Natl Acad Sci U S A. 1978 Feb;75(2):559–563. doi: 10.1073/pnas.75.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kato I., Anfinsen C. B. On the stabilization of ribonuclease S-protein by ribonuclease S-peptide. J Biol Chem. 1969 Feb 10;244(3):1004–1007. [PubMed] [Google Scholar]
- Krigbaum W. R., Komoriya A. Local interactions as a structure determinant for protein molecules: III. Biochim Biophys Acta. 1979 Jan 25;576(1):229–246. doi: 10.1016/0005-2795(79)90499-9. [DOI] [PubMed] [Google Scholar]
- Kuntz I. D. An approach to the tertiary structure of globular proteins. J Am Chem Soc. 1975 Jul 23;97(15):4362–4366. doi: 10.1021/ja00848a038. [DOI] [PubMed] [Google Scholar]
- Kuntz I. D., Crippen G. M., Kollman P. A., Kimelman D. Calculation of protein tertiary structure. J Mol Biol. 1976 Oct 5;106(4):983–994. doi: 10.1016/0022-2836(76)90347-8. [DOI] [PubMed] [Google Scholar]
- Levitt M., Warshel A. Computer simulation of protein folding. Nature. 1975 Feb 27;253(5494):694–698. doi: 10.1038/253694a0. [DOI] [PubMed] [Google Scholar]
- Matheson R. R., Jr, Scheraga H. A. Steps in the pathway of the thermal unfolding of ribonuclease A. A nonspecific photochemical surface-labeling study. Biochemistry. 1979 Jun 12;18(12):2437–2445. doi: 10.1021/bi00579a001. [DOI] [PubMed] [Google Scholar]
- Némethy G., Scheraga H. A. Protein folding. Q Rev Biophys. 1977 Aug;10(3):239–252. doi: 10.1017/s0033583500002936. [DOI] [PubMed] [Google Scholar]
- Rackovsky S., Scheraga H. A. Influence of ordered backbone structure on protein folding. A study of some simple models. Macromolecules. 1978 Jan-Feb;11(1):1–8. doi: 10.1021/ma60061a001. [DOI] [PubMed] [Google Scholar]
- Rossman M. G., Liljas A. Letter: Recognition of structural domains in globular proteins. J Mol Biol. 1974 May 5;85(1):177–181. doi: 10.1016/0022-2836(74)90136-3. [DOI] [PubMed] [Google Scholar]
- Tanaka S., Scheraga H. A. Hypothesis about the mechanism of protein folding. Macromolecules. 1977 Mar-Apr;10(2):291–304. doi: 10.1021/ma60056a015. [DOI] [PubMed] [Google Scholar]
- Tanaka S., Scheraga H. A. Model of protein folding: inclusion of short-, medium-, and long-range interactions. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3802–3806. doi: 10.1073/pnas.72.10.3802. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wyckoff H. W., Tsernoglou D., Hanson A. W., Knox J. R., Lee B., Richards F. M. The three-dimensional structure of ribonuclease-S. Interpretation of an electron density map at a nominal resolution of 2 A. J Biol Chem. 1970 Jan 25;245(2):305–328. [PubMed] [Google Scholar]
- Ycas M., Goel N. S., Jacobsen J. W. On the computation of the tertiary structure of globular proteins. J Theor Biol. 1978 Jun 6;72(3):443–457. doi: 10.1016/0022-5193(78)90311-9. [DOI] [PubMed] [Google Scholar]