Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Dec;76(12):6096–6100. doi: 10.1073/pnas.76.12.6096

13C nuclear magnetic resonance studies of anaerobic glycolysis in suspensions of yeast cells.

J A den Hollander, T R Brown, K Ugurbil, R G Shulman
PMCID: PMC411809  PMID: 42910

Abstract

Anaerobic glycolysis in Saccharomyces cerevisiae has been studied by 13C NMR at 90.5 MHz. [1-13c]Glucose and [6-13C]glucose were fed to suspensions of yeast cells. Time courses for concentration changes of the starting material, of courses for concentration changes of the starting material, of the intermediate fructose 1,6-bisphosphate (Fru-P2), and of the end products, ethanol and glycerol, have been followed with 1-min time resolution. The glucose uptake was well fitted by a Michaelis-Menten model, assuming competition of alpha- and beta-glucose for the same site. The Km for the uptake was found to be 10 mM for beta-glucose and 5 mM for alpha-glucose. The concentration of Fru-P2 showed an initial oscillation before it reached a co,stant level. The 13C label, introduced only as [-13C]- or [6-13C]glucose, was observed in Fru-P2 in both the C1 and C6 positions, simultaneously. From the relative intensities of the C1 Fru-P2 and C6 Fru-P2 peaks in the presence of [1-13C]- and [6-13C]glucose, in vivo kinetic information was obtained about the aldolase-triosephosphate isomerase triangle. We found that under the conditions of these experiments the ratios of backward to forward velocities through aldolase and triosephosphate isomerase were 0.9 +/- 0.1 and 0.8 +/- 1, respectively, indicating they were close to equilibrium.

Full text

PDF
6096

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azam F., Kotyk A. Glucose-6-phosphate as regulator of monosaccharide transport in baker's yeast. FEBS Lett. 1969 Mar;2(5):333–335. doi: 10.1016/0014-5793(69)80057-8. [DOI] [PubMed] [Google Scholar]
  2. BETZ A., CHANCE B. PHASE RELATIONSHIP OF GLYCOLYTIC INTERMEDIATES IN YEAST CELLS WITH OSCILLATORY METABOLIC CONTROL. Arch Biochem Biophys. 1965 Mar;109:585–594. doi: 10.1016/0003-9861(65)90404-2. [DOI] [PubMed] [Google Scholar]
  3. Bañuelos M., Gancedo C. In situ study of the glycolytic pathway in Saccharomyces cerevisiae. Arch Microbiol. 1978 May 30;117(2):197–201. doi: 10.1007/BF00402308. [DOI] [PubMed] [Google Scholar]
  4. Becker J. U., Betz A. Membrane transport as controlling pacemaker of glycolysis in Saccharomyces carlsbergensis. Biochim Biophys Acta. 1972 Aug 9;274(2):584–597. doi: 10.1016/0005-2736(72)90205-2. [DOI] [PubMed] [Google Scholar]
  5. Eakin R. T., Morgan L. O., Gregg C. T., Matwiyoff N. A. Carbon-13 nuclear magnetic resonance spectroscopy of living cells and their metabolism of a specifically labeled 13C substrate. FEBS Lett. 1972 Dec 15;28(3):259–264. doi: 10.1016/0014-5793(72)80726-9. [DOI] [PubMed] [Google Scholar]
  6. Ghosh A., Chance B. Oscillations of glycolytic intermediates in yeast cells. Biochem Biophys Res Commun. 1964 Jun 1;16(2):174–181. doi: 10.1016/0006-291x(64)90357-2. [DOI] [PubMed] [Google Scholar]
  7. Heredia C. F., Sols A., DelaFuente G. Specificity of the constitutive hexose transport in yeast. Eur J Biochem. 1968 Aug;5(3):321–329. doi: 10.1111/j.1432-1033.1968.tb00373.x. [DOI] [PubMed] [Google Scholar]
  8. Hill H. A., Lobb R. R., Sharp S. L., Stokes A. M., Harris J. I., Jack R. S. Metal-replacement studies in Bacillus stearothermophilus aldolase and a comparison of the mechanisms of class I and class II aldolases. Biochem J. 1976 Mar 1;153(3):551–560. doi: 10.1042/bj1530551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hopkins R. H. Selective fermentation: Alcholic fermentation of mixtures of glucose and fructose by brewer's and Sauterne yeasts. Biochem J. 1931;25(1):245–255. doi: 10.1042/bj0250245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kotyk A., Kleinzeller A. Affinity of the yeast membrane carrier for glucose and its role in the Pasteur effect. Biochim Biophys Acta. 1967 Feb 1;135(1):106–111. doi: 10.1016/0005-2736(67)90012-0. [DOI] [PubMed] [Google Scholar]
  11. Rose I. A. THE MECHANISM OF ACTION OF ALDOLASE AND THE ASYMMETRIC LABELING OF HEXOSE. Proc Natl Acad Sci U S A. 1958 Jan;44(1):10–15. doi: 10.1073/pnas.44.1.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. SOLS A., DE LA FUENTE G., VILLARPALASI C., ASENSIO C. Substrate specificity and some other properties of baker's yeast hexokinase. Biochim Biophys Acta. 1958 Oct;30(1):92–101. doi: 10.1016/0006-3002(58)90245-2. [DOI] [PubMed] [Google Scholar]
  13. STICKLAND L. H. The Pasteur effect in normal yeast and its inhibition by various agents. Biochem J. 1956 Nov;64(3):503–515. doi: 10.1042/bj0640503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Serrano R., Delafuente G. Regulatory properties of the constitutive hexose transport in Saccharomyces cerevisiae. Mol Cell Biochem. 1974 Dec 20;5(3):161–171. doi: 10.1007/BF01731379. [DOI] [PubMed] [Google Scholar]
  15. Shulman R. G., Brown T. R., Ugurbil K., Ogawa S., Cohen S. M., den Hollander J. A. Cellular applications of 31P and 13C nuclear magnetic resonance. Science. 1979 Jul 13;205(4402):160–166. doi: 10.1126/science.36664. [DOI] [PubMed] [Google Scholar]
  16. Séquin U., Scott A. I. Carbon-13 as a label in biosynthetic studies. Science. 1974 Oct 11;186(4159):101–107. doi: 10.1126/science.186.4159.101. [DOI] [PubMed] [Google Scholar]
  17. Ugurbil K., Brown T. R., den Hollander J. A., Glynn P., Shulman R. G. High-resolution 13C nuclear magnetic resonance studies of glucose metabolism in Escherichia coli. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3742–3746. doi: 10.1073/pnas.75.8.3742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. van Steveninck J. Competition of sugars for the hexose transport system in yeast. Biochim Biophys Acta. 1968 Apr 29;150(3):424–434. doi: 10.1016/0005-2736(68)90141-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES