Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Dec;76(12):6101–6105. doi: 10.1073/pnas.76.12.6101

Internal organization of long repetitive DNA sequences in sea urchin genomes.

N Chaudhari, S P Craig
PMCID: PMC411810  PMID: 293707

Abstract

In keeping with earlier reports, we have found that reassociated long repeat DNA from sea urchins is thermostable, indicating the absence of evolutionarily diverged families of repeated sequences. However, we found that when fragments of radiolabeled long repeat DNA were denatured and reassociated with intact long repeat driver DNA, then sheared to 350 basepairs and assayed for thermal stability, the level of mismatch found in the duplexes varied inversely with the length of the starting fragments. This effect was shown to be due directly to the physical size of the molecules involved in reassociation. These results are consistent with, and support a model for, long repeat DNA in which short units of repetition are arranged in precise arrays. The significance of this arrangement of sequence units within long repeat DNA is discussed.

Full text

PDF
6101

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bozzoni I., Beccari E. Clustered and interspersed repetitive DNA sequences in four amphibian species with different genome size. Biochim Biophys Acta. 1978 Sep 27;520(2):245–252. doi: 10.1016/0005-2787(78)90224-1. [DOI] [PubMed] [Google Scholar]
  2. Britten R. J., Davidson E. H. Gene regulation for higher cells: a theory. Science. 1969 Jul 25;165(3891):349–357. doi: 10.1126/science.165.3891.349. [DOI] [PubMed] [Google Scholar]
  3. Britten R. J., Graham D. E., Eden F. C., Painchaud D. M., Davidson E. H. Evolutionary divergence and length of repetitive sequences in sea urchin DNA. J Mol Evol. 1976 Dec 31;9(1):1–23. doi: 10.1007/BF01796119. [DOI] [PubMed] [Google Scholar]
  4. Britten R. J., Graham D. E., Neufeld B. R. Analysis of repeating DNA sequences by reassociation. Methods Enzymol. 1974;29:363–418. doi: 10.1016/0076-6879(74)29033-5. [DOI] [PubMed] [Google Scholar]
  5. Chaudhari N., Craig S. P. The evolution of the long and short repetitive DNA sequences in sea urchins. Biochim Biophys Acta. 1979 May 24;562(3):438–452. doi: 10.1016/0005-2787(79)90107-2. [DOI] [PubMed] [Google Scholar]
  6. Craig S. P., Chaudhari N., Steinert M. Characterization of long and short repetitive sequences in the sea urchin genome. Biochim Biophys Acta. 1979 Nov 22;565(1):33–50. doi: 10.1016/0005-2787(79)90081-9. [DOI] [PubMed] [Google Scholar]
  7. Crain W. R., Davidson E. H., Britten R. J. Contrasting patterns of DNA sequence arrangement in Apis mellifera (honeybee) and Musca domestica (housefly). Chromosoma. 1976 Dec 6;59(1):1–12. doi: 10.1007/BF00327705. [DOI] [PubMed] [Google Scholar]
  8. Davidson E. H., Britten R. J. Organization, transcription, and regulation in the animal genome. Q Rev Biol. 1973 Dec;48(4):565–613. doi: 10.1086/407817. [DOI] [PubMed] [Google Scholar]
  9. Davidson E. H., Britten R. J. Regulation of gene expression: possible role of repetitive sequences. Science. 1979 Jun 8;204(4397):1052–1059. doi: 10.1126/science.451548. [DOI] [PubMed] [Google Scholar]
  10. Eden F. C., Graham D. E., Davidson E. H., Britten R. J. Exploration of long and short repetitive sequence relationships in the sea urchin genome. Nucleic Acids Res. 1977;4(5):1553–1567. doi: 10.1093/nar/4.5.1553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Georgiev G. P. On the structural organization of operon and the regulation of RNA synthesis in animal cells. J Theor Biol. 1969 Dec;25(3):473–490. doi: 10.1016/s0022-5193(69)80034-2. [DOI] [PubMed] [Google Scholar]
  12. McCarthy B. J., McConaughy B. L. Related base sequences in the DNA of simple and complex organisms. I. DNA-DNA duplex formation and the incidence of partially related base sequences in DNA. Biochem Genet. 1968 Jun;2(1):37–53. doi: 10.1007/BF01458450. [DOI] [PubMed] [Google Scholar]
  13. Pearson W. R., Wu J. R., Bonner J. Analysis of rat repetitive DNA sequences. Biochemistry. 1978 Jan 10;17(1):51–59. doi: 10.1021/bi00594a008. [DOI] [PubMed] [Google Scholar]
  14. Shenk T. E., Rhodes C., Rigby P. W., Berg P. Biochemical method for mapping mutational alterations in DNA with S1 nuclease: the location of deletions and temperature-sensitive mutations in simian virus 40. Proc Natl Acad Sci U S A. 1975 Mar;72(3):989–993. doi: 10.1073/pnas.72.3.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wu J. R., Pearson W. R., Posakony J. W., Bonner J. Sequence relationship between long and short repetitive DNA of the rat: a preliminary report. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4382–4386. doi: 10.1073/pnas.74.10.4382. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES