Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Dec;76(12):6115–6119. doi: 10.1073/pnas.76.12.6115

DNA-directed in vitro synthesis of proteins involved in bacterial transcription and translation.

T Zarucki-Schulz, C Jerez, G Goldberg, H F Kung, K H Huang, N Brot, H Weissbach
PMCID: PMC411813  PMID: 160561

Abstract

The in vitro synthesis of elongation factor (EF)-Tu (tufB), the beta beta' subunits of RNA polymerase, ribosomal proteins L10 and L12 directed by DNA from the transducing phage lambda rifd 18, EF-Tu (tufA), EF-G, and the alpha subunit of RNA polymerase directed by DNA from the transducing phage lambda fus3 has been investigated in a crude and a partially defined protein-synthesizing system. Proteins L10 and L12 are synthesized in the partially defined system almost as well as in the crude system. However, the synthesis of EF-Tu, EF-G, and the alpha and beta beta' subunits of RNA polymerase is far less efficient in the partially defined system. An active fraction that stimulates the synthesis of these latter proteins has been obtained by fractionation of a high-speed supernatant on DEAE-cellulose. Because previous studies showed that this fraction (1 M DEAE salt eluate) contains a protein, called L factor, that stimulates beta-galactosidase synthesis in vitro, L factor was tested for activity. Although L factor stimulates the synthesis of the beta beta' subunits, it has little or no effect on the in vitro synthesis of the other products studied. In the present experiments, the ratio of L12/L10 and of EF-Tu (tufA)/EF-G formed is 4-6. These values are consistent with in vivo results.

Full text

PDF
6115

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barger B. O., White R. C., Pace J. L., Kemper D. L., Ragland W. L. Estimation of molecular weight by polyacrylamide gel electrophoresis using heat stable fluorophors. Anal Biochem. 1976 Feb;70(2):327–335. doi: 10.1016/0003-2697(76)90453-x. [DOI] [PubMed] [Google Scholar]
  2. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  3. Chu F., Caldwell P., Samuels M., Weissbach H., Brot N. DNA-dependent in vitro synthesis of Escherichia coli ribosomal protein L10 and the formation of an L10L12 complex. Biochem Biophys Res Commun. 1976 May 23;76(2):593–601. doi: 10.1016/0006-291x(77)90765-3. [DOI] [PubMed] [Google Scholar]
  4. Chu F., Miller D. L., Schulz T., Weissbach H., Brot N. DNA-directed in vitro synthesis of elongation factor Tu. Biochem Biophys Res Commun. 1976 Dec 20;73(4):917–927. doi: 10.1016/0006-291x(76)90209-6. [DOI] [PubMed] [Google Scholar]
  5. Dovgas N. V., Vinokurov L. M., Velmoga I. S., Alakhov Y. B., Ovchinnikov Y. A. The primary structure of protein L10 from Escherichia coli ribosomes. FEBS Lett. 1976 Aug 1;67(1):58–61. doi: 10.1016/0014-5793(76)80870-8. [DOI] [PubMed] [Google Scholar]
  6. Fukuda R., Taketo M., Ishihama A. Autogenous regulation of RNA polymerase beta subunit synthesis in vitro. J Biol Chem. 1978 Jul 10;253(13):4501–4504. [PubMed] [Google Scholar]
  7. Furano A. V. Content of elongation factor Tu in Escherichia coli. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4780–4784. doi: 10.1073/pnas.72.12.4780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldberg G., Caldwell P., Weissbach H., Brot N. In vitro regulation of DNA-dependent synthesis of Escherichia coli ribosomal protein L12. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1716–1720. doi: 10.1073/pnas.76.4.1716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gualerzi C., Pon C. L. Radioactive chemical labeling of ribosomal proteins and translational factors in vitro. Methods Enzymol. 1979;59:782–795. doi: 10.1016/0076-6879(79)59125-3. [DOI] [PubMed] [Google Scholar]
  10. Hardy S. J. The stoichiometry of the ribosomal proteins of Escherichia coli. Mol Gen Genet. 1975 Oct 3;140(3):253–274. doi: 10.1007/BF00334270. [DOI] [PubMed] [Google Scholar]
  11. Kaziro Y., Inoue-Yokosawa N., Kawakita M. Studies on polypeptide elongation factor from E. coli. I. Crystalline factor G. J Biochem. 1972 Oct;72(4):853–863. doi: 10.1093/oxfordjournals.jbchem.a129980. [DOI] [PubMed] [Google Scholar]
  12. Kung H. F., Fox J. E., Spears C., Brot N., Weissbach H. Studies on the role of ribosomal proteins L 7 and L 12 in the in vitro synthesis of -galactosidase. J Biol Chem. 1973 Jul 25;248(14):5012–5015. [PubMed] [Google Scholar]
  13. Kung H. F., Redfield B., Treadwell B. V., Eskin B., Spears C., Weissbach H. DNA-directed in vitro synthesis of beta-galactosidase. Studies with purified factors. J Biol Chem. 1977 Oct 10;252(19):6889–6894. [PubMed] [Google Scholar]
  14. Kung H. F., Redfield B., Weissbach H. DNA-directed in vitro synthesis of beta-galactosidase. Purification and characterization of stimulatory factors in an ascites extract. J Biol Chem. 1979 Sep 10;254(17):8404–8408. [PubMed] [Google Scholar]
  15. Kung H. F., Spears C., Schulz T., Weissbach H. Studies on the in vitro synthesis of beta-galactosidase: necessary components in the ribosomal wash. Arch Biochem Biophys. 1974 Jun;162(2):578–584. doi: 10.1016/0003-9861(74)90218-5. [DOI] [PubMed] [Google Scholar]
  16. Kung H. F., Spears C., Weissbach H. DNA-directed in vitro synthesis of beta-galactosidase: dependencies on elongation factor Tu and tRNA. Arch Biochem Biophys. 1976 May;174(1):100–104. doi: 10.1016/0003-9861(76)90328-3. [DOI] [PubMed] [Google Scholar]
  17. Kung H. F., Treadwell B. V., Spears C., Tai P. C., Weissbach H. DNA-directed synthesis in vitro of beta-galactosidase: requirement for a ribosome release factor. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3217–3221. doi: 10.1073/pnas.74.8.3217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kung H., Spears C., Weissbach H. Purification and properties of a soluble factor required for the deoxyribonucleic acid-directed in vitro synthesis of beta-galactosidase. J Biol Chem. 1975 Feb 25;250(4):1556–1562. [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Miller D. L., Weissbach H. Studies on the purification and properties of factor Tu from E. coli. Arch Biochem Biophys. 1970 Nov;141(1):26–37. doi: 10.1016/0003-9861(70)90102-5. [DOI] [PubMed] [Google Scholar]
  21. Morrissey J. J., Cupp L. E., Weissbach H., Brot N. Synthesis of ribosomal proteins L7L12 in relaxed and stringent strains of Escherichia coli. J Biol Chem. 1976 Sep 25;251(18):5516–5521. [PubMed] [Google Scholar]
  22. Nomura M., Morgan E. A. Genetics of bacterial ribosomes. Annu Rev Genet. 1977;11:297–347. doi: 10.1146/annurev.ge.11.120177.001501. [DOI] [PubMed] [Google Scholar]
  23. Pedersen S., Reeh S. V. Analysis of the proteins synthesized in ultraviolet light-irradiated Escherichia coli following infection with the bacteriophages lambdadrifd 18 and lambdadfus-3. Mol Gen Genet. 1976 Mar 30;144(3):339–343. doi: 10.1007/BF00341733. [DOI] [PubMed] [Google Scholar]
  24. Pettersson I., Hardy S. J., Liljas A. The ribosomal protein L8 is a complex L7/L12 and L10. FEBS Lett. 1976 Apr 15;64(1):135–138. doi: 10.1016/0014-5793(76)80267-0. [DOI] [PubMed] [Google Scholar]
  25. Rice R. H., Means G. E. Radioactive labeling of proteins in vitro. J Biol Chem. 1971 Feb 10;246(3):831–832. [PubMed] [Google Scholar]
  26. Subramanian A. R. Copies of proteins L7 and L12 and heterogeneity of the large subunit of Escherichia coli ribosome. J Mol Biol. 1975 Jun 15;95(1):1–8. doi: 10.1016/0022-2836(75)90330-7. [DOI] [PubMed] [Google Scholar]
  27. Taketo M., Ishihama A. Biosynthesis of RNA polymerase in Escherichia coli. IV. Accumulation of intermediates in mutants defective in the subunit assembly. J Mol Biol. 1976 Apr 5;102(2):297–310. doi: 10.1016/s0022-2836(76)80055-1. [DOI] [PubMed] [Google Scholar]
  28. Terhorst C., Möller W., Laursen R., Wittmann-Liebold B. Amino acid sequence of a 50 S ribosomal protein involved in both EFG and EFT dependent GTP-hydrolysis. FEBS Lett. 1972 Dec 15;28(3):325–328. doi: 10.1016/0014-5793(72)80742-7. [DOI] [PubMed] [Google Scholar]
  29. Weigele M., De Bernardo S., Leimgruber W. Fluorescent labeling of proteins. A new methodology. Biochem Biophys Res Commun. 1973 Oct 1;54(3):899–906. doi: 10.1016/0006-291x(73)90779-1. [DOI] [PubMed] [Google Scholar]
  30. Wu R., Padmanabhan R., Bambara R. Nucleotide sequence analysis of bacteriophage DNA. Methods Enzymol. 1974;29:231–253. doi: 10.1016/0076-6879(74)29025-6. [DOI] [PubMed] [Google Scholar]
  31. Yamamoto M., Nomura M. Organization of genes for transcription and translation in the rif region of the Escherichia coli chromosome. J Bacteriol. 1979 Jan;137(1):584–594. doi: 10.1128/jb.137.1.584-594.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES