Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Dec;76(12):6439–6442. doi: 10.1073/pnas.76.12.6439

Endothelial plasmalemmal vesicles as elements in a system of branching invaginations from the cell surface.

M Bundgaard, J Frøkjaer-Jensen, C Crone
PMCID: PMC411880  PMID: 316540

Abstract

In electron microscopy studies of the endothelial vesicles in frog mesenteric capillaries, an accidental observation was made concerning vesicular organization. When tannic acid was added to already fixed tissue, the mordant reached apparently free vesicles in the cytoplasm under conditions in which vesicular movement was excluded and in which the impermeability of the cell membranes was preserved. This indicates a spatial continuity between the vesicles and the cell exterior. It is proposed that cytoplasmic vesicles in endothelial cells are elements of branching, permanent or semipermanent invaginations of the plasmalemma.

Full text

PDF
6439

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bill A. A method to determine osmotically effective albumin and gammaglobulin concentrations in tissue fluids, its application to the uvea and a note on the effects of capillary "leaks" on tissue fluid dynamics. Acta Physiol Scand. 1968 Aug;73(4):511–522. doi: 10.1111/j.1365-201x.1968.tb10890.x. [DOI] [PubMed] [Google Scholar]
  2. Bruns R. R., Palade G. E. Studies on blood capillaries. I. General organization of blood capillaries in muscle. J Cell Biol. 1968 May;37(2):244–276. doi: 10.1083/jcb.37.2.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bruns R. R., Palade G. E. Studies on blood capillaries. II. Transport of ferritin molecules across the wall of muscle capillaries. J Cell Biol. 1968 May;37(2):277–299. doi: 10.1083/jcb.37.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Casley-Smith J. R., Green H. S., Harris J. L., Wadey P. J. The quantitative morphology of skeletal muscle capillaries in relation to permeability. Microvasc Res. 1975 Jul;10(1):43–64. doi: 10.1016/0026-2862(75)90019-9. [DOI] [PubMed] [Google Scholar]
  5. Casley-Smith J. R. The dimensions and numbers of small vesicles in cells, endothelial and mesothelial and the significance of these for endothelial permeability. J Microsc. 1969;90(3):251–268. doi: 10.1111/j.1365-2818.1969.tb00710.x. [DOI] [PubMed] [Google Scholar]
  6. GROTTE G. Passage of dextran molecules across the blood-lymph barrier. Acta Chir Scand Suppl. 1956;211:1–84. [PubMed] [Google Scholar]
  7. HUXLEY H. E. EVIDENCE FOR CONTINUITY BETWEEN THE CENTRAL ELEMENTS OF THE TRIADS AND EXTRACELLULAR SPACE IN FROG SARTORIUS MUSCLE. Nature. 1964 Jun 13;202:1067–1071. doi: 10.1038/2021067b0. [DOI] [PubMed] [Google Scholar]
  8. Heuser J. E., Reese T. S., Landis D. M. Functional changes in frog neuromuscular junctions studied with freeze-fracture. J Neurocytol. 1974 Mar;3(1):109–131. doi: 10.1007/BF01111936. [DOI] [PubMed] [Google Scholar]
  9. Johansson B. R. Permeability of muscle capillaries to interstitially microinjected ferritin. Microvasc Res. 1978 Nov;16(3):362–368. doi: 10.1016/0026-2862(78)90069-9. [DOI] [PubMed] [Google Scholar]
  10. Johansson B. R. Permeability of muscle capillaries to interstitially microinjected horseradish peroxidase. Microvasc Res. 1978 Nov;16(3):340–353. doi: 10.1016/0026-2862(78)90067-5. [DOI] [PubMed] [Google Scholar]
  11. Johansson B. R. Size and distribution of endothelial plasmalemmal vesicles in consecutive segments of the microvasculature in cat skeletal muscle. Microvasc Res. 1979 Mar;17(2):107–117. doi: 10.1016/0026-2862(79)90400-x. [DOI] [PubMed] [Google Scholar]
  12. Karnovsky M. J. The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol. 1967 Oct;35(1):213–236. doi: 10.1083/jcb.35.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kobayashi S. Ferritin labeling in the fixed muscle capillary. A doubt on the tracer-experiments as the basis for the vesicular transport theory. Arch Histol Jpn. 1970 Jun;32(1):81–86. doi: 10.1679/aohc1950.32.81. [DOI] [PubMed] [Google Scholar]
  14. Mohamed A. H. Ultrastructural permeability studies in capillaries of rabbit oral mucosa and salivary glands. Microvasc Res. 1975 May;9(3):287–303. doi: 10.1016/0026-2862(75)90065-5. [DOI] [PubMed] [Google Scholar]
  15. PAPPENHEIMER J. R. Passage of molecules through capillary wals. Physiol Rev. 1953 Jul;33(3):387–423. doi: 10.1152/physrev.1953.33.3.387. [DOI] [PubMed] [Google Scholar]
  16. Palade G. E., Bruns R. R. Structural modulations of plasmalemmal vesicles. J Cell Biol. 1968 Jun;37(3):633–649. doi: 10.1083/jcb.37.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pietra G. G., Szidon J. P., Leventhal M. M., Fishman A. P. Hemoglobin as a tracer in hemodynamic pulmonary edema. Science. 1969 Dec 26;166(3913):1643–1646. doi: 10.1126/science.166.3913.1643. [DOI] [PubMed] [Google Scholar]
  18. Rippe B., Kamiya A., Folkow B. Transcapillary passage of albumin, effects of tissue cooling and of increases in filtration and plasma colloid osmotic pressure. Acta Physiol Scand. 1979 Feb;105(2):171–187. doi: 10.1111/j.1748-1716.1979.tb06329.x. [DOI] [PubMed] [Google Scholar]
  19. Simionescu M., Simionescu N., Palade G. E. Morphometric data on the endothelium of blood capillaries. J Cell Biol. 1974 Jan;60(1):128–152. doi: 10.1083/jcb.60.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Simionescu N., Siminoescu M., Palade G. E. Permeability of muscle capillaries to small heme-peptides. Evidence for the existence of patent transendothelial channels. J Cell Biol. 1975 Mar;64(3):586–607. doi: 10.1083/jcb.64.3.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Simionescu N., Simionescu M. Galloylglucoses of low molecular weight as mordant in electron microscopy. I. Procedure, and evidence for mordanting effect. J Cell Biol. 1976 Sep;70(3):608–621. doi: 10.1083/jcb.70.3.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Simionescu N., Simionescu M., Palade G. E. Permeability of muscle capillaries to exogenous myoglobin. J Cell Biol. 1973 May;57(2):424–452. doi: 10.1083/jcb.57.2.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Simionescu N., Simionescu M., Palade G. E. Structural basis of permeability in sequential segments of the microvasculature of the diaphragm. II. Pathways followed by microperoxidase across the endothelium. Microvasc Res. 1978 Jan;15(1):17–36. doi: 10.1016/0026-2862(78)90002-x. [DOI] [PubMed] [Google Scholar]
  24. Westergaard E., Brightman M. W. Transport of proteins across normal cerebral arterioles. J Comp Neurol. 1973 Nov 1;152(1):17–44. doi: 10.1002/cne.901520103. [DOI] [PubMed] [Google Scholar]
  25. Williams M. C., Wissig S. L. The permeability of muscle capillaries to horseradish peroxidase. J Cell Biol. 1975 Sep;66(3):531–555. doi: 10.1083/jcb.66.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wissig S. L., Williams M. C. Permeability of muscle capillaries to microperoxidase. J Cell Biol. 1978 Feb;76(2):341–359. doi: 10.1083/jcb.76.2.341. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES