Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Aug 29;92(18):8527–8531. doi: 10.1073/pnas.92.18.8527

Inhibition of calcium-independent phospholipase A2 prevents arachidonic acid incorporation and phospholipid remodeling in P388D1 macrophages.

J Balsinde 1, I D Bianco 1, E J Ackermann 1, K Conde-Frieboes 1, E A Dennis 1
PMCID: PMC41190  PMID: 7667324

Abstract

Cellular levels of free arachidonic acid (AA) are controlled by a deacylation/reacylation cycle whereby the fatty acid is liberated by phospholipases and reincorporated by acyltransferases. We have found that the esterification of AA into membrane phospholipids is a Ca(2+)-independent process and that it is blocked up to 60-70% by a bromoenollactone (BEL) that is a selective inhibitor of a newly discovered Ca(2+)-independent phospholipase A2 (PLA2) in macrophages. The observed inhibition correlates with a decreased steady-state level of lysophospholipids as well as with the inhibition of the Ca(2+)-independent PLA2 activity in these cells. This inhibition is specific for the Ca(2+)-independent PLA2 in that neither group IV PLA2, group II PLA2, arachidonoyl-CoA synthetase, lysophospholipid:arachidonoyl-CoA acyltransferase, nor CoA-independent transacylase is affected by treatment with BEL. Moreover, two BEL analogs that are not inhibitors of the Ca(2+)-independent PLA2--namely a bromomethyl ketone and methyl-BEL--do not inhibit AA incorporation into phospholipids. Esterification of palmitic acid is only slightly affected by BEL, indicating that de novo synthetic pathways are not inhibited by BEL. Collectively, the data suggest that the Ca(2+)-independent PLA2 in P388D1 macrophages plays a major role in regulating the incorporation of AA into membrane phospholipids by providing the lysophospholipid acceptor employed in the acylation reaction.

Full text

PDF
8527

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackermann E. J., Conde-Frieboes K., Dennis E. A. Inhibition of macrophage Ca(2+)-independent phospholipase A2 by bromoenol lactone and trifluoromethyl ketones. J Biol Chem. 1995 Jan 6;270(1):445–450. doi: 10.1074/jbc.270.1.445. [DOI] [PubMed] [Google Scholar]
  2. Ackermann E. J., Kempner E. S., Dennis E. A. Ca(2+)-independent cytosolic phospholipase A2 from macrophage-like P388D1 cells. Isolation and characterization. J Biol Chem. 1994 Mar 25;269(12):9227–9233. [PubMed] [Google Scholar]
  3. Asmis R., Randriamampita C., Tsien R. Y., Dennis E. A. Intracellular Ca2+, inositol 1,4,5-trisphosphate and additional signalling in the stimulation by platelet-activating factor of prostaglandin E2 formation in P388D1 macrophage-like cells. Biochem J. 1994 Mar 15;298(Pt 3):543–551. doi: 10.1042/bj2980543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  5. Bakken A. M., Farstad M., Osmundsen H. The activities of acyl-CoA hydrolase in lysate and subcellular fractions of human blood platelets in relation to activities of acyl-CoA:1-acyl-lysophospholipid acyltransferase. Biochim Biophys Acta. 1994 Sep 15;1214(2):180–186. doi: 10.1016/0005-2760(94)90042-6. [DOI] [PubMed] [Google Scholar]
  6. Balsinde J., Barbour S. E., Bianco I. D., Dennis E. A. Arachidonic acid mobilization in P388D1 macrophages is controlled by two distinct Ca(2+)-dependent phospholipase A2 enzymes. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11060–11064. doi: 10.1073/pnas.91.23.11060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Balsinde J., Fernández B., Solís-Herruzo J. A., Diez E. Pathways for arachidonic acid mobilization in zymosan-stimulated mouse peritoneal macrophages. Biochim Biophys Acta. 1992 Jul 22;1136(1):75–82. doi: 10.1016/0167-4889(92)90087-r. [DOI] [PubMed] [Google Scholar]
  8. Barbour S. E., Dennis E. A. Antisense inhibition of group II phospholipase A2 expression blocks the production of prostaglandin E2 by P388D1 cells. J Biol Chem. 1993 Oct 15;268(29):21875–21882. [PubMed] [Google Scholar]
  9. Bjerve K. S., Daae L. N., Bremer J. The selective loss of lysophospholipids in some commonly used lipid-extraction procedures. Anal Biochem. 1974 Mar;58(1):238–245. doi: 10.1016/0003-2697(74)90463-1. [DOI] [PubMed] [Google Scholar]
  10. Blank M. L., Smith Z. L., Snyder F. Contributing factors in the trafficking of [3H]arachidonate between phospholipids. Biochim Biophys Acta. 1992 Mar 25;1124(3):262–272. doi: 10.1016/0005-2760(92)90138-l. [DOI] [PubMed] [Google Scholar]
  11. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  12. Chilton F. H., Hadley J. S., Murphy R. C. Incorporation of arachidonic acid into 1-acyl-2-lyso-sn-glycero-3-phosphocholine of the human neutrophil. Biochim Biophys Acta. 1987 Jan 13;917(1):48–56. doi: 10.1016/0005-2760(87)90282-7. [DOI] [PubMed] [Google Scholar]
  13. Dennis E. A. Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem. 1994 May 6;269(18):13057–13060. [PubMed] [Google Scholar]
  14. Dennis E. A. The biosynthesis of phospholipids. Methods Enzymol. 1992;209:1–4. doi: 10.1016/0076-6879(92)09003-l. [DOI] [PubMed] [Google Scholar]
  15. Di Virgilio F., Lew D. P., Pozzan T. Protein kinase C activation of physiological processes in human neutrophils at vanishingly small cytosolic Ca2+ levels. Nature. 1984 Aug 23;310(5979):691–693. doi: 10.1038/310691a0. [DOI] [PubMed] [Google Scholar]
  16. Goppelt-Struebe M., Koerner C. F., Hausmann G., Gemsa D., Resch K. Control of prostanoid synthesis: role of reincorporation of released precursor fatty acids. Prostaglandins. 1986 Sep;32(3):373–385. doi: 10.1016/0090-6980(86)90006-7. [DOI] [PubMed] [Google Scholar]
  17. Hazen S. L., Zupan L. A., Weiss R. H., Getman D. P., Gross R. W. Suicide inhibition of canine myocardial cytosolic calcium-independent phospholipase A2. Mechanism-based discrimination between calcium-dependent and -independent phospholipases A2. J Biol Chem. 1991 Apr 15;266(11):7227–7232. [PubMed] [Google Scholar]
  18. Hill E. E., Husbands D. R., Lands W. E. The selective incorporation of 14C-glycerol into different species of phosphatidic acid, phosphatidylethanolamine, and phosphatidylcholine. J Biol Chem. 1968 Sep 10;243(17):4440–4451. [PubMed] [Google Scholar]
  19. Irvine R. F. How is the level of free arachidonic acid controlled in mammalian cells? Biochem J. 1982 Apr 15;204(1):3–16. doi: 10.1042/bj2040003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jackowski S., Hsu L., Rock C. O. 2-acylglycerophosphoethanolamine acyltransferase/acyl-[acyl-carrier- protein] synthetase from Escherichia coli. Methods Enzymol. 1992;209:111–117. doi: 10.1016/0076-6879(92)09015-u. [DOI] [PubMed] [Google Scholar]
  21. Kröner E. E., Peskar B. A., Fischer H., Ferber E. Control of arachidonic acid accumulation in bone marrow-derived macrophages by acyltransferases. J Biol Chem. 1981 Apr 25;256(8):3690–3697. [PubMed] [Google Scholar]
  22. Lands W. E., Inoue M., Sugiura Y., Okuyama H. Selective incorporation of polyunsaturated fatty acids into phosphatidylcholine by rat liver microsomes. J Biol Chem. 1982 Dec 25;257(24):14968–14972. [PubMed] [Google Scholar]
  23. Lapetina E. G., Billah M. M., Cuatrecasas P. Rapid acylation and deacylation of arachidonic acid into phosphatidic acid of horse neutrophils. J Biol Chem. 1980 Nov 25;255(22):10966–10970. [PubMed] [Google Scholar]
  24. Liscovitch M., Amsterdam A. Gonadotropin-releasing hormone activates phospholipase D in ovarian granulosa cells. Possible role in signal transduction. J Biol Chem. 1989 Jul 15;264(20):11762–11767. [PubMed] [Google Scholar]
  25. MacDonald J. I., Sprecher H. Phospholipid fatty acid remodeling in mammalian cells. Biochim Biophys Acta. 1991 Jul 9;1084(2):105–121. doi: 10.1016/0005-2760(91)90209-z. [DOI] [PubMed] [Google Scholar]
  26. Schonhardt T., Ferber E. Translocation of phospholipase A2 from cytosol to membranes induced by 1-oleoyl-2-acetyl-glycerol in serum-free cultured macrophages. Biochem Biophys Res Commun. 1987 Dec 16;149(2):769–775. doi: 10.1016/0006-291x(87)90434-7. [DOI] [PubMed] [Google Scholar]
  27. Smith W. L. The eicosanoids and their biochemical mechanisms of action. Biochem J. 1989 Apr 15;259(2):315–324. doi: 10.1042/bj2590315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sugiura T., Kudo N., Ojima T., Mabuchi-Itoh K., Yamashita A., Waku K. Coenzyme A-dependent cleavage of membrane phospholipids in several rat tissues: ATP-independent acyl-CoA synthesis and the generation of lysophospholipids. Biochim Biophys Acta. 1995 Mar 16;1255(2):167–176. doi: 10.1016/0005-2760(94)00237-s. [DOI] [PubMed] [Google Scholar]
  29. Venable M. E., Olson S. C., Nieto M. L., Wykle R. L. Enzymatic studies of lyso platelet-activating factor acylation in human neutrophils and changes upon stimulation. J Biol Chem. 1993 Apr 15;268(11):7965–7975. [PubMed] [Google Scholar]
  30. Wilson D. B., Prescott S. M., Majerus P. W. Discovery of an arachidonoyl coenzyme A synthetase in human platelets. J Biol Chem. 1982 Apr 10;257(7):3510–3515. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES