Abstract
The role of the lysosomal proteases cathepsins B and L and the calcium-dependent cytosolic protease calpain in hypoxia-induced renal proximal tubular injury was investigated. As compared to normoxic tubules, cathepsin B and L activity, evaluated by the specific fluorescent substrate benzyloxycarbonyl-L-phenylalanyl-L-arginine-7-amido-4-methylcoumarin, was not increased in hypoxic tubules or the medium used for incubation of hypoxic tubules in spite of high lactate dehydrogenase (LDH) release into the medium during hypoxia. These data in rat proximal tubules suggest that cathepsins are not released from lysosomes and do not gain access to the medium during hypoxia. An assay for calpain activity in isolated proximal tubules using the fluorescent substrate N-succinyl-Leu-Tyr-7-amido-4-methylcoumarin was developed. The calcium ionophore ionomycin induced a dose-dependent increase in calpain activity. This increase in calpain activity occurred prior to cell membrane damage as assessed by LDH release. Tubular calpain activity increased significantly by 7.5 min of hypoxia, before there was significant LDH release, and further increased during 20 min of hypoxia. The cysteine protease inhibitor N-benzyloxycarbonyl-Val-Phe methyl ester (CBZ) markedly decreased LDH release after 20 min of hypoxia and completely prevented the increase in calpain activity during hypoxia. The increase in calpain activity during hypoxia and the inhibitor studies with CBZ therefore supported a role for calpain as a mediator of hypoxia-induced proximal tubular injury.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Almeida A. R., Bunnachak D., Burnier M., Wetzels J. F., Burke T. J., Schrier R. W. Time-dependent protective effects of calcium channel blockers on anoxia- and hypoxia-induced proximal tubule injury. J Pharmacol Exp Ther. 1992 Feb;260(2):526–532. [PubMed] [Google Scholar]
- Barrett A. J., Kirschke H. Cathepsin B, Cathepsin H, and cathepsin L. Methods Enzymol. 1981;80(Pt 100):535–561. doi: 10.1016/s0076-6879(81)80043-2. [DOI] [PubMed] [Google Scholar]
- Bonventre J. V. Mechanisms of ischemic acute renal failure. Kidney Int. 1993 May;43(5):1160–1178. doi: 10.1038/ki.1993.163. [DOI] [PubMed] [Google Scholar]
- Bronk S. F., Gores G. J. pH-dependent nonlysosomal proteolysis contributes to lethal anoxic injury of rat hepatocytes. Am J Physiol. 1993 Apr;264(4 Pt 1):G744–G751. doi: 10.1152/ajpgi.1993.264.4.G744. [DOI] [PubMed] [Google Scholar]
- Gores G. J., Nieminen A. L., Wray B. E., Herman B., Lemasters J. J. Intracellular pH during "chemical hypoxia" in cultured rat hepatocytes. Protection by intracellular acidosis against the onset of cell death. J Clin Invest. 1989 Feb;83(2):386–396. doi: 10.1172/JCI113896. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hawkins H. K., Ericsson J. L., Biberfeld P., Trump B. F. Lysosome and phagosome stability in lethal cell injury. Morphologic tracer studies in cell injury due to inhibition of energy metabolism, immune cytolysis and photosensitization. Am J Pathol. 1972 Aug;68(2):255–258. [PMC free article] [PubMed] [Google Scholar]
- Hayashi M., Kasai Y., Kawashima S. Preferential localization of calcium-activated neutral protease in epithelial tissues. Biochem Biophys Res Commun. 1987 Oct 29;148(2):567–574. doi: 10.1016/0006-291x(87)90914-4. [DOI] [PubMed] [Google Scholar]
- Iizuka K., Kawaguchi H., Yasuda H. Calpain is activated during hypoxic myocardial cell injury. Biochem Med Metab Biol. 1991 Dec;46(3):427–431. doi: 10.1016/0885-4505(91)90091-x. [DOI] [PubMed] [Google Scholar]
- Joseph J. K., Bunnachak D., Burke T. J., Schrier R. W. A novel method of inducing and assuring total anoxia during in vitro studies of O2 deprivation injury. J Am Soc Nephrol. 1990 Nov;1(5):837–840. doi: 10.1681/ASN.V15837. [DOI] [PubMed] [Google Scholar]
- Kirschke H., Wood L., Roisen F. J., Bird J. W. Activity of lysosomal cysteine proteinase during differentiation of rat skeletal muscle. Biochem J. 1983 Sep 15;214(3):871–877. doi: 10.1042/bj2140871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Komatsu K., Inazuki K., Hosoya J., Satoh S. Beneficial effect of new thiol protease inhibitors, epoxide derivatives, on dystrophic mice. Exp Neurol. 1986 Jan;91(1):23–29. doi: 10.1016/0014-4886(86)90022-1. [DOI] [PubMed] [Google Scholar]
- Kribben A., Wieder E. D., Wetzels J. F., Yu L., Gengaro P. E., Burke T. J., Schrier R. W. Evidence for role of cytosolic free calcium in hypoxia-induced proximal tubule injury. J Clin Invest. 1994 May;93(5):1922–1929. doi: 10.1172/JCI117183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lee K. S., Frank S., Vanderklish P., Arai A., Lynch G. Inhibition of proteolysis protects hippocampal neurons from ischemia. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7233–7237. doi: 10.1073/pnas.88.16.7233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mehdi S. Cell-penetrating inhibitors of calpain. Trends Biochem Sci. 1991 Apr;16(4):150–153. doi: 10.1016/0968-0004(91)90058-4. [DOI] [PubMed] [Google Scholar]
- Olbricht C. J., Cannon J. K., Garg L. C., Tisher C. C. Activities of cathepsins B and L in isolated nephron segments from proteinuric and nonproteinuric rats. Am J Physiol. 1986 Jun;250(6 Pt 2):F1055–F1062. doi: 10.1152/ajprenal.1986.250.6.F1055. [DOI] [PubMed] [Google Scholar]
- Plomp P. J., Gordon P. B., Meijer A. J., Høyvik H., Seglen P. O. Energy dependence of different steps in the autophagic-lysosomal pathway. J Biol Chem. 1989 Apr 25;264(12):6699–6704. [PubMed] [Google Scholar]
- Saido T. C., Sorimachi H., Suzuki K. Calpain: new perspectives in molecular diversity and physiological-pathological involvement. FASEB J. 1994 Aug;8(11):814–822. [PubMed] [Google Scholar]
- Sasaki T., Kikuchi T., Yumoto N., Yoshimura N., Murachi T. Comparative specificity and kinetic studies on porcine calpain I and calpain II with naturally occurring peptides and synthetic fluorogenic substrates. J Biol Chem. 1984 Oct 25;259(20):12489–12494. [PubMed] [Google Scholar]
- Scherberich J. E., Wolf G., Stuckhardt C., Kugler P., Schoeppe W. Characterization and clinical role of glomerular and tubular proteases from human kidney. Adv Exp Med Biol. 1988;240:275–282. doi: 10.1007/978-1-4613-1057-0_32. [DOI] [PubMed] [Google Scholar]
- Schrier R. W., Arnold P. E., Van Putten V. J., Burke T. J. Cellular calcium in ischemic acute renal failure: role of calcium entry blockers. Kidney Int. 1987 Sep;32(3):313–321. doi: 10.1038/ki.1987.211. [DOI] [PubMed] [Google Scholar]
- Schwertschlag U., Schrier R. W., Wilson P. Beneficial effects of calcium channel blockers and calmodulin binding drugs on in vitro renal cell anoxia. J Pharmacol Exp Ther. 1986 Jul;238(1):119–124. [PubMed] [Google Scholar]
- Seubert P., Lee K., Lynch G. Ischemia triggers NMDA receptor-linked cytoskeletal proteolysis in hippocampus. Brain Res. 1989 Jul 17;492(1-2):366–370. doi: 10.1016/0006-8993(89)90921-9. [DOI] [PubMed] [Google Scholar]
- Suzuki K., Saido T. C., Hirai S. Modulation of cellular signals by calpain. Ann N Y Acad Sci. 1992 Dec 31;674:218–227. doi: 10.1111/j.1749-6632.1992.tb27490.x. [DOI] [PubMed] [Google Scholar]
- Wetzels J. F., Wang X., Gengaro P. E., Nemenoff R. A., Burke T. J., Schrier R. W. Glycine protection against hypoxic but not phospholipase A2-induced injury in rat proximal tubules. Am J Physiol. 1993 Jan;264(1 Pt 2):F94–F99. doi: 10.1152/ajprenal.1993.264.1.F94. [DOI] [PubMed] [Google Scholar]
- Wetzels J. F., Yu L., Wang X., Kribben A., Burke T. J., Schrier R. W. Calcium modulation and cell injury in isolated rat proximal tubules. J Pharmacol Exp Ther. 1993 Oct;267(1):176–180. [PubMed] [Google Scholar]
- Wilson P. D., Firestone R. A., Lenard J. The role of lysosomal enzymes in killing of mammalian cells by the lysosomotropic detergent N-dodecylimidazole. J Cell Biol. 1987 May;104(5):1223–1229. doi: 10.1083/jcb.104.5.1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson P. D., Hartz P. A. Mechanisms of cyclosporine A toxicity in defined cultures of renal tubule epithelia: a role for cysteine proteases. Cell Biol Int Rep. 1991 Dec;15(12):1243–1258. doi: 10.1016/0309-1651(91)90096-2. [DOI] [PubMed] [Google Scholar]
- Wilson P. D., Schrier R. W. Nephron segment and calcium as determinants of anoxic cell death in renal cultures. Kidney Int. 1986 Jun;29(6):1172–1179. doi: 10.1038/ki.1986.124. [DOI] [PubMed] [Google Scholar]
- Yoshimura N., Hatanaka M., Kitahara A., Kawaguchi N., Murachi T. Intracellular localization of two distinct Ca2+-proteases (calpain I and calpain II) as demonstrated by using discriminative antibodies. J Biol Chem. 1984 Aug 10;259(15):9847–9852. [PubMed] [Google Scholar]
- Yu L., Gengaro P. E., Niederberger M., Burke T. J., Schrier R. W. Nitric oxide: a mediator in rat tubular hypoxia/reoxygenation injury. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1691–1695. doi: 10.1073/pnas.91.5.1691. [DOI] [PMC free article] [PubMed] [Google Scholar]