Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 25;70(Pt 7):o822–o823. doi: 10.1107/S1600536814014433

2-Bromo-5-tert-butyl-N-methyl-N-[2-(methyl­amino)­phen­yl]-3-(1-methyl-1H-benzimidazol-2-yl)benzamide

Poonam Rajesh Prasad a, Shikha Das a, Harkesh B Singh a, Ray J Butcher b,*
PMCID: PMC4120529  PMID: 25161598

Abstract

In the title compound, C27H29BrN4O, benzimidazole ring system and the amide moiety are planar [r.m.s. deviations = 0.016 (2) and 0.017 (1) Å, respectively]. The mol­ecule adopts a conformation in which the amide linkage is almost perpendicular to the central ring [dihedral angle = 85.79 (8)°], while the benzimidazole ring system makes a dihedral angle of 70.26 (11)° with the central ring. In the crystal, the mol­ecules form dimers through N—H⋯O hydrogen bonds and C—H⋯O interactions. These dimers are further linked into zigzag ribbons along [201] by weak C—H⋯Br inter­actions. As a result of the bulky nature of the mol­ecule, as evidenced by the large dihedral angles between rings, there is little evidence for any π–π inter­actions.

Keywords: crystal structure

Related literature  

The metal binding properties of imidazole-containing pincer ligands can be modified by the type of donor atoms and the electron-withdrawing and electron-releasing character of their substituents, see: Selander & Szabó (2011). For the effect of N-substitution on the catalytic activity of phosphinoimidazolines in palladium-catalysed Heck reactions, see: Busacca et al. (2003). For the use of bromine-substituted benzimidazole in Heck reactions, see: Reddy & Krishna (2005). For standard bond lengths, see: Allen et al. (1987). For the preparation of the precursor, 2-bromo-5-(tert-but­yl)isophthalic acid, see: Field et al. (2003).graphic file with name e-70-0o822-scheme1.jpg

Experimental  

Crystal data  

  • C27H29BrN4O

  • M r = 505.45

  • Monoclinic, Inline graphic

  • a = 34.4327 (13) Å

  • b = 9.4152 (2) Å

  • c = 17.1092 (7) Å

  • β = 118.312 (5)°

  • V = 4883.2 (3) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.50 mm−1

  • T = 123 K

  • 0.38 × 0.32 × 0.23 mm

Data collection  

  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.788, T max = 1.000

  • 9307 measured reflections

  • 4929 independent reflections

  • 4100 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.093

  • S = 1.03

  • 4929 reflections

  • 308 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814014433/jj2190sup1.cif

e-70-0o822-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814014433/jj2190Isup2.hkl

e-70-0o822-Isup2.hkl (241.5KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814014433/jj2190Isup3.cml

CCDC reference: 1009070

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O1i 0.81 (3) 2.35 (3) 3.038 (3) 143 (3)
C4—H4A⋯Brii 0.95 2.98 3.719 (3) 135
C12—H12A⋯O1i 0.95 2.37 3.287 (3) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

S1. Experimental

The methyl­ation reaction of 2 (Fig. 1) was carried out by reacting 1 (0.5 g, 1.12 mmol) with an excess of methyl iodide (1.75 g, 10 eq), followed by the addition of KOH (0.125 g, 2.24 mmol) in dry acetone (20 mL) and some molecular sieves. The reaction mixture was refluxed for 2 h. Then, it was diluted with ethyl acetate and washed with water. The organic layer was dried over Na2SO4 and purified by column chromatography to afford 2 which was crystallized from a mixture of di­chloro­methane and ether. Anal. Calcd. for C27H29BrON4: C, 64.16; H, 5.78; N, 11.08; found C, 64.30; H, 6.22; N, 9.17.

S1.1. Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.95 and 0.98 Å Uiso(H) = 1.2Ueq(C) and 0.96 Å for CH3 [Uiso(H) = 1.5Ueq(C)]. The hydrogen atom attached to N3 was located in a difference Fourier and refined isotropically.

S2. Comment

The presence of imidazole rings in any molecular framework provides excellent modification sites for the fine tuning of properties related to electronic and steric factors. It has been reported in the literature that the strong electronic effect can be modified by the type of donor atoms and the electron-withdrawing and electron-releasing character of their substituents (Selander, & Szabó, 2011). Recently the effect of N-substitution on the catalytic activities of phosphinoimidazolines in palladium catalyzed Heck reactions has been reported (Busacca et al., 2003). Later, Reddy and co-workers (Reddy, & Krishna, 2005) have studied the use of bromine substituted benzimidazole in Heck reactions. Pincer ligands have immense scope in exploring different types of metal coordination chemistry and stabilizing unusual species. They provide the sites which can be easily fine tuned to synthesize a number of metal complexes/species, which can be stabilized by three coordinating/bonding units of the pincer ligands. There are no examples of selenium containing benzimidazoles known in the literature. Therefore, 2, 2'-(2-bromo-5-(tert-butyl)-1,3-diyl)bis­(1H-benzimidazole) (1) and its derivatives, having two coordinating imidazole rings were designed to incorporate selenium at 2-position of the phenyl group. An attempted methyl­ation of 1 led to cleavage of the one of the benzimidazole rings and resulted in the formation of unexpected compound 2 (Fig. 1). 2-Bromo-5-(tert-butyl)­isophthalic acid, the precursor for synthesizing 1, was prepared according to literature procedure (Field, et al., 2003). Compound 1 was synthesized by the reaction of 2-bromo-5-tert-butyl-isophthalic acid with 1,2-phenyl­enedi­amine in polyphospho­ric acid at 240°C.

In view of the above, the structure of the title compound, C27H29BrN4O, was determined (Fig. 2). The bond lengths and angles are all in the expected ranges (Allen et al., 1987) for such compounds. All the aromatic groups and the amide moiety are planar (rms deviations of 0.006 (1), 0.008 (2), 0.016 (2), and 0.017 (1) for the central phenyl ring, the substituent phenyl ring, the benzimidazole ring, and the amide moiety, respectively). The molecule adopts a conformation where the amide linkage is almost perpendicular to the central ring with a dihedral angle of 85.79 (8)° between central ring (C9–C14) and amide moiety (C19/C20/C21/N4/O1) while the benzimidazole ring makes a dihedral angle of 70.26° with the central ring. The molecules form dimers through N3—H···O1 inter­molecular hydrogen bonds (Fig. 3). These dimers are further linked into zig-zag ribbons in the [2 0 1] direction by weak C—H···Br inter­actions. Because of the bulky nature of the molecule, as evidenced by the large dihedral angles between rings, there is little evidence for any π–π inter­actions.

Figures

Fig. 1.

Fig. 1.

The structures of 1 and 2.

Fig. 2.

Fig. 2.

The molecular structure of C27H29BrN4O, showing the atom numbering scheme and 30% probability displacement ellipsoids and the linking of the molecules into dimers by N—H···O hydrogen bonds (shown as dashed bonds).

Fig. 3.

Fig. 3.

The molecular packing for C27H29BrN4O viewed along the b axis showing linking of the hydrogen bonded dimers into zigzag chains in the [2 0 1] direction by C—H···Br interactions (N—H···O and C—H···Br interactions shown as dashed bonds).

Crystal data

C27H29BrN4O F(000) = 2096
Mr = 505.45 Dx = 1.375 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2yc Cell parameters from 4036 reflections
a = 34.4327 (13) Å θ = 2.9–75.5°
b = 9.4152 (2) Å µ = 2.50 mm1
c = 17.1092 (7) Å T = 123 K
β = 118.312 (5)° Prism, colorless
V = 4883.2 (3) Å3 0.38 × 0.32 × 0.23 mm
Z = 8

Data collection

Agilent Xcalibur Ruby Gemini diffractometer 4929 independent reflections
Radiation source: Enhance (Cu) X-ray Source 4100 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
Detector resolution: 10.5081 pixels mm-1 θmax = 75.6°, θmin = 2.9°
ω scans h = −42→42
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −8→11
Tmin = 0.788, Tmax = 1.000 l = −20→21
9307 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.4711P] where P = (Fo2 + 2Fc2)/3
4929 reflections (Δ/σ)max = 0.004
308 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Experimental. 1H NMR (400 MHz, CDCl3): δ (ppm) 7.87-7.71 (1H, m), 7.46-7.31 (4H, m), 7.09-7.07 (1H, m), 6.54-6.48 (1H, m), 3.53 (2H, s), 3.45 (2H, s), 2.89 (2H, s), 1.38 (1H, s), 1.13 (6H, s). 13C NMR (CDCl3): δ 29.4, 30.9, 31.1, 31.9, 31.2, 34.7, 35.1, 35.5, 53.9, 109.7, 109.9, 120.2, 122.1, 122.5, 122.7, 123.1, 123.3, 129.4, 129.7, 131.2, 133.0, 135.6, 142.8, 151.7, 152.6, 152.8.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br 0.630352 (8) 0.53882 (3) 0.543344 (15) 0.03435 (9)
O1 0.52147 (5) 0.66100 (17) 0.36987 (11) 0.0338 (3)
N1 0.70366 (6) 0.3018 (2) 0.53797 (13) 0.0370 (4)
N2 0.65609 (7) 0.1320 (2) 0.53017 (14) 0.0380 (4)
N3 0.56938 (7) 0.7887 (2) 0.19074 (15) 0.0406 (5)
H3B 0.5490 (9) 0.765 (3) 0.1989 (18) 0.033 (7)*
N4 0.57538 (6) 0.78517 (19) 0.36118 (13) 0.0315 (4)
C1 0.72063 (8) 0.4328 (3) 0.52039 (19) 0.0447 (6)
H1A 0.6998 0.4684 0.4614 0.067*
H1B 0.7492 0.4142 0.5227 0.067*
H1C 0.7244 0.5039 0.5653 0.067*
C2 0.72791 (8) 0.2049 (3) 0.60366 (16) 0.0401 (5)
C3 0.77297 (9) 0.1991 (4) 0.66449 (19) 0.0541 (7)
H3A 0.7929 0.2717 0.6682 0.065*
C4 0.78664 (11) 0.0803 (4) 0.7190 (2) 0.0620 (9)
H4A 0.8171 0.0697 0.7600 0.074*
C5 0.75708 (12) −0.0240 (4) 0.7155 (2) 0.0615 (8)
H5A 0.7679 −0.1020 0.7554 0.074*
C6 0.71279 (11) −0.0174 (3) 0.6561 (2) 0.0542 (7)
H6A 0.6929 −0.0892 0.6541 0.065*
C7 0.69805 (8) 0.1004 (3) 0.59819 (16) 0.0402 (5)
C8 0.66112 (7) 0.2518 (2) 0.49703 (15) 0.0323 (4)
C9 0.62557 (7) 0.3270 (2) 0.42009 (14) 0.0292 (4)
C10 0.60873 (7) 0.2663 (2) 0.33589 (15) 0.0300 (4)
H10A 0.6198 0.1769 0.3297 0.036*
C11 0.57614 (7) 0.3331 (2) 0.26044 (14) 0.0292 (4)
C12 0.55997 (7) 0.4627 (2) 0.27251 (15) 0.0294 (4)
H12A 0.5371 0.5086 0.2224 0.035*
C13 0.57612 (6) 0.5266 (2) 0.35517 (14) 0.0264 (4)
C14 0.60895 (7) 0.4577 (2) 0.42851 (14) 0.0276 (4)
C15 0.55815 (8) 0.2676 (2) 0.16780 (16) 0.0358 (5)
C16 0.59482 (11) 0.1859 (3) 0.15917 (19) 0.0543 (7)
H16A 0.6042 0.1043 0.1996 0.081*
H16B 0.6200 0.2490 0.1744 0.081*
H16C 0.5835 0.1524 0.0980 0.081*
C17 0.52108 (12) 0.1646 (4) 0.1534 (2) 0.0693 (11)
H17A 0.4978 0.2157 0.1592 0.104*
H17B 0.5328 0.0888 0.1979 0.104*
H17C 0.5089 0.1232 0.0938 0.104*
C18 0.54015 (8) 0.3820 (3) 0.09601 (15) 0.0363 (5)
H18A 0.5131 0.4223 0.0925 0.054*
H18B 0.5336 0.3400 0.0387 0.054*
H18C 0.5622 0.4573 0.1108 0.054*
C19 0.55554 (7) 0.6638 (2) 0.36324 (13) 0.0275 (4)
C20 0.55836 (9) 0.9201 (2) 0.3754 (2) 0.0426 (6)
H20A 0.5362 0.9011 0.3947 0.064*
H20B 0.5448 0.9743 0.3199 0.064*
H20C 0.5827 0.9751 0.4212 0.064*
C21 0.61458 (7) 0.7918 (2) 0.35017 (17) 0.0326 (5)
C22 0.65527 (8) 0.8083 (3) 0.42439 (18) 0.0414 (5)
H22A 0.6574 0.8092 0.4818 0.050*
C23 0.69305 (8) 0.8234 (3) 0.4155 (2) 0.0511 (7)
H23A 0.7211 0.8336 0.4664 0.061*
C24 0.68929 (8) 0.8235 (3) 0.3315 (2) 0.0507 (7)
H24A 0.7151 0.8333 0.3251 0.061*
C25 0.64900 (8) 0.8098 (3) 0.2569 (2) 0.0435 (6)
H25A 0.6474 0.8101 0.2000 0.052*
C26 0.60991 (7) 0.7951 (2) 0.26395 (17) 0.0346 (5)
C27 0.56379 (9) 0.7866 (3) 0.10141 (18) 0.0464 (6)
H27A 0.5323 0.7794 0.0588 0.070*
H27B 0.5795 0.7047 0.0945 0.070*
H27C 0.5758 0.8743 0.0905 0.070*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br 0.03690 (13) 0.03680 (13) 0.02700 (13) 0.00268 (9) 0.01323 (10) −0.00251 (9)
O1 0.0297 (7) 0.0358 (8) 0.0387 (8) −0.0016 (6) 0.0186 (7) −0.0021 (7)
N1 0.0310 (9) 0.0397 (10) 0.0355 (10) 0.0022 (8) 0.0118 (8) 0.0008 (9)
N2 0.0409 (10) 0.0310 (9) 0.0377 (10) 0.0037 (8) 0.0151 (9) 0.0023 (8)
N3 0.0332 (10) 0.0481 (12) 0.0406 (11) −0.0087 (9) 0.0175 (9) −0.0048 (9)
N4 0.0269 (9) 0.0257 (8) 0.0416 (10) 0.0007 (7) 0.0159 (8) −0.0004 (8)
C1 0.0359 (12) 0.0481 (14) 0.0495 (15) −0.0062 (11) 0.0196 (12) −0.0017 (12)
C2 0.0389 (12) 0.0445 (13) 0.0324 (12) 0.0115 (10) 0.0132 (10) 0.0003 (10)
C3 0.0398 (14) 0.072 (2) 0.0381 (14) 0.0112 (13) 0.0085 (12) −0.0019 (14)
C4 0.0498 (16) 0.083 (2) 0.0357 (14) 0.0283 (16) 0.0059 (13) 0.0053 (15)
C5 0.071 (2) 0.0625 (19) 0.0414 (15) 0.0313 (17) 0.0189 (15) 0.0140 (14)
C6 0.0675 (19) 0.0453 (15) 0.0460 (15) 0.0195 (14) 0.0237 (15) 0.0108 (12)
C7 0.0439 (13) 0.0377 (12) 0.0349 (12) 0.0119 (10) 0.0153 (11) 0.0026 (10)
C8 0.0334 (11) 0.0304 (10) 0.0312 (11) 0.0043 (9) 0.0138 (9) −0.0007 (9)
C9 0.0270 (10) 0.0282 (10) 0.0307 (11) −0.0011 (8) 0.0124 (9) 0.0003 (8)
C10 0.0302 (10) 0.0243 (9) 0.0355 (11) −0.0010 (8) 0.0155 (9) −0.0012 (8)
C11 0.0321 (10) 0.0241 (9) 0.0313 (11) −0.0072 (8) 0.0150 (9) −0.0027 (8)
C12 0.0292 (10) 0.0267 (10) 0.0294 (10) −0.0019 (8) 0.0115 (9) 0.0023 (8)
C13 0.0246 (9) 0.0239 (9) 0.0302 (10) −0.0031 (8) 0.0125 (8) −0.0007 (8)
C14 0.0279 (10) 0.0289 (10) 0.0249 (10) −0.0031 (8) 0.0117 (8) −0.0022 (8)
C15 0.0483 (13) 0.0268 (10) 0.0300 (11) −0.0073 (10) 0.0167 (10) −0.0028 (9)
C16 0.082 (2) 0.0392 (13) 0.0388 (14) 0.0177 (14) 0.0262 (15) 0.0001 (11)
C17 0.089 (2) 0.071 (2) 0.0360 (14) −0.053 (2) 0.0204 (16) −0.0103 (14)
C18 0.0436 (12) 0.0350 (11) 0.0307 (11) 0.0006 (10) 0.0179 (10) −0.0003 (9)
C19 0.0249 (9) 0.0289 (10) 0.0242 (10) 0.0005 (8) 0.0080 (8) −0.0015 (8)
C20 0.0406 (12) 0.0276 (11) 0.0617 (16) 0.0050 (10) 0.0261 (12) 0.0003 (11)
C21 0.0271 (10) 0.0223 (9) 0.0484 (13) −0.0001 (8) 0.0179 (10) 0.0013 (9)
C22 0.0332 (12) 0.0383 (12) 0.0450 (14) −0.0049 (10) 0.0123 (11) 0.0063 (11)
C23 0.0282 (12) 0.0508 (15) 0.0623 (18) −0.0053 (11) 0.0116 (12) 0.0077 (13)
C24 0.0316 (12) 0.0470 (14) 0.077 (2) −0.0034 (11) 0.0282 (13) 0.0031 (14)
C25 0.0407 (13) 0.0375 (12) 0.0617 (16) −0.0055 (10) 0.0320 (13) −0.0044 (12)
C26 0.0310 (11) 0.0244 (9) 0.0477 (13) −0.0018 (8) 0.0182 (10) −0.0021 (9)
C27 0.0515 (15) 0.0427 (13) 0.0443 (14) −0.0125 (12) 0.0221 (12) −0.0076 (11)

Geometric parameters (Å, º)

Br—C14 1.901 (2) C12—C13 1.388 (3)
O1—C19 1.232 (3) C12—H12A 0.9500
N1—C8 1.373 (3) C13—C14 1.389 (3)
N1—C2 1.379 (3) C13—C19 1.510 (3)
N1—C1 1.456 (3) C15—C18 1.526 (3)
N2—C8 1.310 (3) C15—C17 1.527 (3)
N2—C7 1.391 (3) C15—C16 1.545 (4)
N3—C26 1.365 (3) C16—H16A 0.9800
N3—C27 1.447 (3) C16—H16B 0.9800
N3—H3B 0.81 (3) C16—H16C 0.9800
N4—C19 1.340 (3) C17—H17A 0.9800
N4—C21 1.450 (3) C17—H17B 0.9800
N4—C20 1.467 (3) C17—H17C 0.9800
C1—H1A 0.9800 C18—H18A 0.9800
C1—H1B 0.9800 C18—H18B 0.9800
C1—H1C 0.9800 C18—H18C 0.9800
C2—C7 1.394 (4) C20—H20A 0.9800
C2—C3 1.401 (4) C20—H20B 0.9800
C3—C4 1.388 (5) C20—H20C 0.9800
C3—H3A 0.9500 C21—C22 1.383 (3)
C4—C5 1.395 (5) C21—C26 1.406 (3)
C4—H4A 0.9500 C22—C23 1.387 (3)
C5—C6 1.376 (5) C22—H22A 0.9500
C5—H5A 0.9500 C23—C24 1.379 (4)
C6—C7 1.412 (4) C23—H23A 0.9500
C6—H6A 0.9500 C24—C25 1.375 (4)
C8—C9 1.484 (3) C24—H24A 0.9500
C9—C14 1.393 (3) C25—C26 1.414 (3)
C9—C10 1.395 (3) C25—H25A 0.9500
C10—C11 1.395 (3) C27—H27A 0.9800
C10—H10A 0.9500 C27—H27B 0.9800
C11—C12 1.396 (3) C27—H27C 0.9800
C11—C15 1.531 (3)
C8—N1—C2 106.0 (2) C18—C15—C11 111.07 (18)
C8—N1—C1 128.4 (2) C17—C15—C11 108.6 (2)
C2—N1—C1 125.5 (2) C18—C15—C16 108.3 (2)
C8—N2—C7 104.4 (2) C17—C15—C16 109.0 (3)
C26—N3—C27 122.4 (2) C11—C15—C16 110.6 (2)
C26—N3—H3B 117 (2) C15—C16—H16A 109.5
C27—N3—H3B 119 (2) C15—C16—H16B 109.5
C19—N4—C21 123.86 (18) H16A—C16—H16B 109.5
C19—N4—C20 119.04 (18) C15—C16—H16C 109.5
C21—N4—C20 117.02 (18) H16A—C16—H16C 109.5
N1—C1—H1A 109.5 H16B—C16—H16C 109.5
N1—C1—H1B 109.5 C15—C17—H17A 109.5
H1A—C1—H1B 109.5 C15—C17—H17B 109.5
N1—C1—H1C 109.5 H17A—C17—H17B 109.5
H1A—C1—H1C 109.5 C15—C17—H17C 109.5
H1B—C1—H1C 109.5 H17A—C17—H17C 109.5
N1—C2—C7 105.7 (2) H17B—C17—H17C 109.5
N1—C2—C3 131.4 (3) C15—C18—H18A 109.5
C7—C2—C3 123.0 (3) C15—C18—H18B 109.5
C4—C3—C2 115.7 (3) H18A—C18—H18B 109.5
C4—C3—H3A 122.1 C15—C18—H18C 109.5
C2—C3—H3A 122.1 H18A—C18—H18C 109.5
C3—C4—C5 122.0 (3) H18B—C18—H18C 109.5
C3—C4—H4A 119.0 O1—C19—N4 122.7 (2)
C5—C4—H4A 119.0 O1—C19—C13 119.92 (19)
C6—C5—C4 122.0 (3) N4—C19—C13 117.37 (17)
C6—C5—H5A 119.0 N4—C20—H20A 109.5
C4—C5—H5A 119.0 N4—C20—H20B 109.5
C5—C6—C7 117.2 (3) H20A—C20—H20B 109.5
C5—C6—H6A 121.4 N4—C20—H20C 109.5
C7—C6—H6A 121.4 H20A—C20—H20C 109.5
N2—C7—C2 110.2 (2) H20B—C20—H20C 109.5
N2—C7—C6 129.8 (3) C22—C21—C26 121.5 (2)
C2—C7—C6 120.0 (3) C22—C21—N4 119.1 (2)
N2—C8—N1 113.7 (2) C26—C21—N4 119.1 (2)
N2—C8—C9 124.9 (2) C21—C22—C23 120.3 (3)
N1—C8—C9 121.4 (2) C21—C22—H22A 119.8
C14—C9—C10 118.6 (2) C23—C22—H22A 119.8
C14—C9—C8 122.40 (19) C24—C23—C22 119.0 (3)
C10—C9—C8 119.00 (19) C24—C23—H23A 120.5
C9—C10—C11 121.9 (2) C22—C23—H23A 120.5
C9—C10—H10A 119.0 C25—C24—C23 121.4 (2)
C11—C10—H10A 119.0 C25—C24—H24A 119.3
C10—C11—C12 117.3 (2) C23—C24—H24A 119.3
C10—C11—C15 121.96 (19) C24—C25—C26 120.8 (3)
C12—C11—C15 120.7 (2) C24—C25—H25A 119.6
C13—C12—C11 122.3 (2) C26—C25—H25A 119.6
C13—C12—H12A 118.8 N3—C26—C21 121.4 (2)
C11—C12—H12A 118.8 N3—C26—C25 121.8 (2)
C12—C13—C14 118.62 (19) C21—C26—C25 116.8 (2)
C12—C13—C19 119.05 (19) N3—C27—H27A 109.5
C14—C13—C19 122.21 (19) N3—C27—H27B 109.5
C13—C14—C9 121.17 (19) H27A—C27—H27B 109.5
C13—C14—Br 119.78 (16) N3—C27—H27C 109.5
C9—C14—Br 119.01 (16) H27A—C27—H27C 109.5
C18—C15—C17 109.2 (2) H27B—C27—H27C 109.5
C8—N1—C2—C7 0.1 (2) C12—C13—C14—Br −177.74 (14)
C1—N1—C2—C7 177.6 (2) C19—C13—C14—Br −1.6 (3)
C8—N1—C2—C3 178.1 (3) C10—C9—C14—C13 0.4 (3)
C1—N1—C2—C3 −4.3 (4) C8—C9—C14—C13 179.08 (19)
N1—C2—C3—C4 −176.7 (3) C10—C9—C14—Br 178.12 (15)
C7—C2—C3—C4 1.0 (4) C8—C9—C14—Br −3.2 (3)
C2—C3—C4—C5 −2.2 (4) C10—C11—C15—C18 −154.3 (2)
C3—C4—C5—C6 1.9 (5) C12—C11—C15—C18 26.3 (3)
C4—C5—C6—C7 −0.2 (5) C10—C11—C15—C17 85.6 (3)
C8—N2—C7—C2 −0.3 (3) C12—C11—C15—C17 −93.8 (3)
C8—N2—C7—C6 −178.8 (3) C10—C11—C15—C16 −34.1 (3)
N1—C2—C7—N2 0.1 (3) C12—C11—C15—C16 146.5 (2)
C3—C2—C7—N2 −178.1 (2) C21—N4—C19—O1 −177.7 (2)
N1—C2—C7—C6 178.7 (2) C20—N4—C19—O1 5.7 (3)
C3—C2—C7—C6 0.5 (4) C21—N4—C19—C13 1.1 (3)
C5—C6—C7—N2 177.4 (3) C20—N4—C19—C13 −175.5 (2)
C5—C6—C7—C2 −0.9 (4) C12—C13—C19—O1 82.7 (3)
C7—N2—C8—N1 0.4 (3) C14—C13—C19—O1 −93.4 (2)
C7—N2—C8—C9 177.9 (2) C12—C13—C19—N4 −96.1 (2)
C2—N1—C8—N2 −0.3 (3) C14—C13—C19—N4 87.7 (2)
C1—N1—C8—N2 −177.8 (2) C19—N4—C21—C22 −98.6 (3)
C2—N1—C8—C9 −177.9 (2) C20—N4—C21—C22 78.2 (3)
C1—N1—C8—C9 4.6 (4) C19—N4—C21—C26 87.6 (3)
N2—C8—C9—C14 112.4 (3) C20—N4—C21—C26 −95.7 (3)
N1—C8—C9—C14 −70.3 (3) C26—C21—C22—C23 −2.4 (4)
N2—C8—C9—C10 −68.9 (3) N4—C21—C22—C23 −176.1 (2)
N1—C8—C9—C10 108.4 (2) C21—C22—C23—C24 0.8 (4)
C14—C9—C10—C11 0.4 (3) C22—C23—C24—C25 0.4 (4)
C8—C9—C10—C11 −178.28 (19) C23—C24—C25—C26 0.1 (4)
C9—C10—C11—C12 −1.6 (3) C27—N3—C26—C21 −177.6 (2)
C9—C10—C11—C15 179.03 (19) C27—N3—C26—C25 4.3 (4)
C10—C11—C12—C13 2.0 (3) C22—C21—C26—N3 −175.4 (2)
C15—C11—C12—C13 −178.63 (19) N4—C21—C26—N3 −1.7 (3)
C11—C12—C13—C14 −1.2 (3) C22—C21—C26—C25 2.8 (3)
C11—C12—C13—C19 −177.46 (18) N4—C21—C26—C25 176.5 (2)
C12—C13—C14—C9 0.0 (3) C24—C25—C26—N3 176.5 (2)
C19—C13—C14—C9 176.10 (18) C24—C25—C26—C21 −1.6 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3B···O1i 0.81 (3) 2.35 (3) 3.038 (3) 143 (3)
C4—H4A···Brii 0.95 2.98 3.719 (3) 135
C12—H12A···O1i 0.95 2.37 3.287 (3) 163

Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+3/2, y−1/2, −z+3/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: JJ2190).

References

  1. Agilent (2012). CrysalisAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Busacca, C. A., Grossbach, D., So, R. C., O’Brien, E. M. & Spinelli, E. M. (2003). Org. Lett. 5, 595–598. [DOI] [PubMed]
  4. Field, J. E., Hill, T. J. & Venkataraman, D. J. (2003). J. Org. Chem. 68, 6071–6078. [DOI] [PubMed]
  5. Reddy, K. R. & Krishna, G. G. (2005). Tetrahedron Lett. 46, 661–663.
  6. Selander, N. J. & Szabó, K. (2011). Chem. Rev. 111, 2048–2076. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814014433/jj2190sup1.cif

e-70-0o822-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814014433/jj2190Isup2.hkl

e-70-0o822-Isup2.hkl (241.5KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814014433/jj2190Isup3.cml

CCDC reference: 1009070

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES