Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 18;70(Pt 7):o785. doi: 10.1107/S1600536814011611

2-[2,6-Bis(propan-2-yl)phen­yl]-1,3-di­cyclo­hexyl­guanidine

Tomáš Chlupatý a, Zdeňka Padělková a,*
PMCID: PMC4120537  PMID: 25161571

Abstract

In the title asymmetric di­cyclo­hexyl­phenyl­guanidine, C25H41N3, the central guanidine C atom deviates by only 0.004 (2) Å from the central plane defined by the three N atoms. The benzene and the cyclo­hexyl rings are rotated out of the central plane of the N3C unit by 85.63 (12)° (benzene) and 51.52 (9) and 49.37 (12)° (cyclohexyl). The crystal packing features only by van der Waals inter­actions.

Related literature  

For similar structures of various related compounds, see: Shen et al. (2011); Ghosh et al. (2008); Yıldırım et al. (2007); Brazeau et al. (2012); Han & Huynh (2009); Tanatani et al. (1998); Zhang et al. (2009); Boere et al. (2000). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-70-0o785-scheme1.jpg

Experimental  

Crystal data  

  • C25H41N3

  • M r = 383.61

  • Monoclinic, Inline graphic

  • a = 30.9001 (3) Å

  • b = 9.9442 (5) Å

  • c = 18.5260 (3) Å

  • β = 124.962 (3)°

  • V = 4665.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 150 K

  • 0.45 × 0.18 × 0.18 mm

Data collection  

  • Bruker–Nonius KappaCCD area-detector diffractometer

  • Absorption correction: gaussian (Coppens, 1970) T min = 0.982, T max = 0.991

  • 40512 measured reflections

  • 5336 independent reflections

  • 3272 reflections with I > 2σ(I)

  • R int = 0.098

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.137

  • S = 1.06

  • 5336 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814011611/kp2469sup1.cif

e-70-0o785-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814011611/kp2469Isup2.hkl

e-70-0o785-Isup2.hkl (261.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814011611/kp2469Isup3.cml

CCDC reference: 1004128

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank the Technology Agency of the Czech Republic (project No. TA02020466) for financial support of this work.

supplementary crystallographic information

S1. Comment

The determination of the structure of title compound (Fig. 1) was carried out in order to compare the essential structural parametes of this type of guanidine with other structures which will be isolated from its reactivity investigation e.g. both protonation and deprotonation reactions leading presumably to guanidinium, guanidinate(-) or guanidinate(2-) salts. The guanidinium salts and guanidinates are common species in nowadays chemistry and can be used as versatile ligands. Guanidine can be used as a precursor of the desired products by reactions with an acid or a base. Asymmetric guanidinates or guanidinium salts which are frequently tested for mentioned applications contain usually one or more phenyl rings facilitating crystallization of products. Except of three examples of phenyl substituted benzimidazol amines (Shen et al. (2011); Ghosh et al. (2008); Yıldırım et al. (2007)), there are five examples of acyclic phenyl substituted guanidines (see below). In this series the title compound, bis(cyclohexyl-2,6-(diisopropyl)phenyl (Dipp) substituted guanidine, is together with N''-methyl-N,N'-diphenylguanidine (Tanatani et al. (1998)) and 1-cyclohexyl-2,3-diphenylguanidine (Zhang et al. (2009)) the only representative of asymmetric species reported so far. The delocalization of π-electrons and thus the presence of so-called Y-aromaticity described for protonated or deprotonated guanidines is not taking part in these compounds. The degree of multiple C–N bonds localization is strongly dependent to the steric as well as electronic feature of all three substituents of the fundamental N–C(N)–N skeleton. The C=N double bond in I is localized on the connection of the central skeleton with the Dipp substituent with interatomic distance of 1.289 (2) Å and the rest of C–N bonds from the centre of the structure can be attributed to regular C–N single bonds ((Allen et al. (1987)). The same structural arrangements were found by Brazeau et al. (2012) for 1-(2,6-diisopropylphenyl)-2,3-dimesitylguanidine, Han et al. (2009) for N,N',N''-tris(2,6-dimethylphenyl)guanidine, Tanatani et al. (1998) for N''-methyl-N,N'-diphenylguanidine and Zhang et al. (2009) for 1-cyclohexyl-2,3-diphenylguanidine. On the contrary, the central motif of highly stericaly crowded (Boere et al. (2000)), N,N',N''-tris(2,6-di-isopropylphenyl)guanidine reveals much lower π-electron delocalization than I and other reported species due to steric demands of Dipp substituents. The central N3C skeleton is approaching the ideally planar arrangement similarly as in the cases of the rest of phenylguanidinates mentioned above. The N–C–N angles in all compounds are close to 120° with the small deviation of the interatomic angles of NH-C-NH fragment - in the case of I the angle N2–C1–N3 being about 4° sharper. There are no close contacts within the monoclinic C2/c unit cell of I.

S2. Refinement

All the hydrogens were discernible in the difference electron density map. However, all the hydrogens were situated into idealized positions and refined riding on their parent C or N atoms, with N–H = 0.86 Å, C–H = 0.93 Å for aromatic H atoms, with U(H) = 1.2Ueq(C/N) for the NH group and U(H) = 1.5Ueq(C/N) for other H atoms, respectively.

Figures

Fig. 1.

Fig. 1.

View of the title compound with the displacement ellipsoids shown at the 50% probability level. The H atoms are shown with arbitrary radii.

Crystal data

C25H41N3 F(000) = 1696
Mr = 383.61 Dx = 1.092 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 40662 reflections
a = 30.9001 (3) Å θ = 1–27.5°
b = 9.9442 (5) Å µ = 0.06 mm1
c = 18.5260 (3) Å T = 150 K
β = 124.962 (3)° Needle, colourless
V = 4665.3 (3) Å3 0.45 × 0.18 × 0.18 mm
Z = 8

Data collection

Bruker–Nonius KappaCCD area-detector diffractometer 5336 independent reflections
Radiation source: fine-focus sealed tube 3272 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.098
Detector resolution: 9.091 pixels mm-1 θmax = 27.5°, θmin = 2.2°
φ and ω scans to fill the Ewald sphere h = −40→37
Absorption correction: gaussian (Coppens, 1970) k = −12→12
Tmin = 0.982, Tmax = 0.991 l = −24→24
40512 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0373P)2 + 6.0132P] where P = (Fo2 + 2Fc2)/3
5336 reflections (Δ/σ)max < 0.001
253 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.85963 (6) −0.00660 (16) 0.09390 (11) 0.0249 (4)
N2 0.91824 (6) 0.12199 (17) 0.22129 (11) 0.0272 (4)
H2 0.9424 0.1231 0.2117 0.033*
C1 0.87631 (7) 0.03532 (18) 0.17160 (13) 0.0230 (4)
N3 0.85204 (6) −0.00799 (17) 0.21031 (11) 0.0281 (4)
H3 0.8618 0.0247 0.2605 0.034*
C7 0.86512 (7) 0.1607 (2) 0.00225 (13) 0.0259 (4)
C2 0.88288 (7) 0.0413 (2) 0.05185 (13) 0.0242 (4)
C3 0.92155 (7) −0.0387 (2) 0.05466 (13) 0.0268 (4)
C4 0.93881 (8) −0.0019 (2) 0.00274 (14) 0.0335 (5)
H4 0.9635 −0.0554 0.0027 0.040*
C20 0.81023 (8) −0.10825 (19) 0.16858 (13) 0.0246 (4)
H20 0.7872 −0.0884 0.1054 0.029*
C25 0.77745 (8) −0.0977 (2) 0.20611 (14) 0.0292 (5)
H25A 0.8000 −0.1130 0.2692 0.035*
H25B 0.7628 −0.0079 0.1960 0.035*
C8 0.94246 (8) −0.1630 (2) 0.11264 (14) 0.0305 (5)
H8 0.9429 −0.1434 0.1649 0.037*
C19 0.97612 (8) 0.2886 (2) 0.32971 (14) 0.0347 (5)
H19A 0.9757 0.3364 0.2837 0.042*
H19B 1.0052 0.2252 0.3564 0.042*
C15 0.87852 (8) 0.3080 (2) 0.25502 (14) 0.0309 (5)
H15A 0.8737 0.3595 0.2064 0.037*
H15B 0.8465 0.2567 0.2329 0.037*
C11 0.82506 (8) 0.2511 (2) 0.00116 (14) 0.0284 (5)
H11 0.8238 0.2248 0.0509 0.034*
C14 0.92473 (7) 0.2116 (2) 0.28959 (13) 0.0266 (4)
H14 0.9274 0.1562 0.3357 0.032*
C21 0.83129 (9) −0.2505 (2) 0.17984 (16) 0.0347 (5)
H21A 0.8517 −0.2565 0.1551 0.042*
H21B 0.8545 −0.2718 0.2421 0.042*
C10 0.99868 (9) −0.2004 (2) 0.14496 (16) 0.0408 (6)
H10A 0.9990 −0.2301 0.0960 0.049*
H10B 1.0112 −0.2714 0.1876 0.049*
H10C 1.0212 −0.1233 0.1716 0.049*
C6 0.88416 (8) 0.1932 (2) −0.04814 (14) 0.0337 (5)
H6 0.8726 0.2715 −0.0817 0.040*
C5 0.91994 (8) 0.1121 (2) −0.04892 (14) 0.0368 (5)
H5 0.9314 0.1341 −0.0842 0.044*
C16 0.88758 (9) 0.4038 (2) 0.32643 (15) 0.0374 (5)
H16A 0.8582 0.4660 0.3017 0.045*
H16B 0.8893 0.3532 0.3728 0.045*
C24 0.73288 (8) −0.2005 (2) 0.16355 (16) 0.0394 (6)
H24A 0.7143 −0.1963 0.1915 0.047*
H24B 0.7080 −0.1777 0.1019 0.047*
C12 0.77015 (9) 0.2305 (3) −0.08243 (16) 0.0453 (6)
H12A 0.7456 0.2881 −0.0812 0.054*
H12B 0.7597 0.1384 −0.0861 0.054*
H12C 0.7703 0.2521 −0.1328 0.054*
C23 0.75267 (10) −0.3431 (2) 0.17037 (17) 0.0425 (6)
H23A 0.7228 −0.4035 0.1373 0.051*
H23B 0.7734 −0.3713 0.2315 0.051*
C9 0.90576 (10) −0.2825 (2) 0.06648 (16) 0.0441 (6)
H9A 0.9059 −0.3079 0.0166 0.053*
H9B 0.8706 −0.2579 0.0470 0.053*
H9C 0.9175 −0.3569 0.1066 0.053*
C13 0.84053 (10) 0.3987 (2) 0.01292 (19) 0.0496 (7)
H13A 0.8382 0.4305 −0.0381 0.059*
H13B 0.8761 0.4088 0.0640 0.059*
H13C 0.8171 0.4499 0.0206 0.059*
C17 0.93828 (9) 0.4821 (2) 0.36433 (16) 0.0429 (6)
H17A 0.9351 0.5393 0.3191 0.052*
H17B 0.9442 0.5394 0.4116 0.052*
C18 0.98491 (9) 0.3882 (3) 0.39960 (15) 0.0427 (6)
H18A 0.9908 0.3394 0.4499 0.051*
H18B 1.0163 0.4410 0.4196 0.051*
C22 0.78632 (10) −0.3517 (2) 0.13444 (18) 0.0435 (6)
H22A 0.8005 −0.4419 0.1432 0.052*
H22B 0.7645 −0.3338 0.0717 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0297 (9) 0.0247 (9) 0.0258 (9) −0.0024 (7) 0.0191 (8) −0.0014 (7)
N2 0.0262 (9) 0.0324 (9) 0.0287 (9) −0.0067 (8) 0.0190 (8) −0.0076 (8)
C1 0.0243 (10) 0.0210 (10) 0.0273 (11) 0.0013 (8) 0.0169 (9) 0.0007 (8)
N3 0.0362 (9) 0.0287 (9) 0.0271 (9) −0.0093 (8) 0.0225 (8) −0.0058 (8)
C7 0.0235 (10) 0.0299 (11) 0.0242 (10) −0.0055 (9) 0.0136 (9) −0.0031 (9)
C2 0.0236 (10) 0.0288 (10) 0.0224 (10) −0.0069 (8) 0.0145 (8) −0.0039 (8)
C3 0.0268 (10) 0.0314 (11) 0.0235 (11) −0.0056 (9) 0.0152 (9) −0.0063 (9)
C4 0.0311 (11) 0.0449 (13) 0.0316 (12) −0.0006 (10) 0.0222 (10) −0.0034 (10)
C20 0.0301 (10) 0.0234 (10) 0.0252 (10) −0.0020 (9) 0.0188 (9) 0.0010 (8)
C25 0.0328 (11) 0.0293 (11) 0.0335 (12) 0.0028 (9) 0.0238 (10) 0.0015 (9)
C8 0.0369 (12) 0.0305 (11) 0.0309 (12) 0.0002 (9) 0.0234 (10) −0.0032 (9)
C19 0.0282 (11) 0.0446 (13) 0.0317 (12) −0.0083 (10) 0.0175 (10) −0.0073 (10)
C15 0.0283 (11) 0.0333 (12) 0.0286 (12) −0.0046 (9) 0.0148 (9) −0.0051 (9)
C11 0.0334 (11) 0.0262 (10) 0.0280 (11) −0.0024 (9) 0.0190 (10) 0.0007 (9)
C14 0.0281 (11) 0.0310 (11) 0.0225 (10) −0.0043 (9) 0.0155 (9) −0.0029 (9)
C21 0.0452 (13) 0.0269 (11) 0.0485 (14) −0.0009 (10) 0.0366 (12) −0.0002 (10)
C10 0.0408 (13) 0.0436 (14) 0.0407 (14) 0.0086 (11) 0.0248 (11) 0.0031 (11)
C6 0.0318 (11) 0.0399 (12) 0.0285 (12) −0.0044 (10) 0.0168 (10) 0.0046 (10)
C5 0.0343 (12) 0.0545 (14) 0.0312 (12) −0.0054 (11) 0.0244 (10) 0.0010 (11)
C16 0.0398 (12) 0.0374 (12) 0.0375 (13) −0.0019 (10) 0.0237 (11) −0.0060 (10)
C24 0.0296 (11) 0.0474 (14) 0.0449 (14) −0.0018 (11) 0.0236 (11) 0.0057 (11)
C12 0.0345 (13) 0.0515 (15) 0.0456 (15) 0.0038 (11) 0.0205 (12) −0.0053 (12)
C23 0.0496 (14) 0.0355 (12) 0.0530 (15) −0.0130 (11) 0.0357 (13) −0.0007 (11)
C9 0.0550 (15) 0.0369 (13) 0.0448 (15) −0.0077 (12) 0.0313 (13) −0.0082 (11)
C13 0.0585 (16) 0.0332 (13) 0.0658 (18) −0.0030 (12) 0.0408 (15) −0.0041 (12)
C17 0.0500 (14) 0.0388 (13) 0.0402 (14) −0.0123 (12) 0.0260 (12) −0.0155 (11)
C18 0.0353 (12) 0.0523 (15) 0.0336 (13) −0.0167 (11) 0.0156 (11) −0.0158 (11)
C22 0.0659 (16) 0.0254 (11) 0.0565 (16) −0.0099 (11) 0.0451 (14) −0.0074 (11)

Geometric parameters (Å, º)

N1—C1 1.289 (2) C14—H14 0.9798
N1—C2 1.411 (2) C21—C22 1.521 (3)
N2—C1 1.379 (2) C21—H21A 0.9702
N2—C14 1.465 (2) C21—H21B 0.9699
N2—H2 0.8602 C10—H10A 0.9599
C1—N3 1.370 (2) C10—H10B 0.9600
N3—C20 1.455 (2) C10—H10C 0.9601
N3—H3 0.8599 C6—C5 1.375 (3)
C7—C6 1.397 (3) C6—H6 0.9299
C7—C2 1.406 (3) C5—H5 0.9301
C7—C11 1.521 (3) C16—C17 1.515 (3)
C2—C3 1.412 (3) C16—H16A 0.9700
C3—C4 1.390 (3) C16—H16B 0.9701
C3—C8 1.518 (3) C24—C23 1.520 (3)
C4—C5 1.380 (3) C24—H24A 0.9698
C4—H4 0.9299 C24—H24B 0.9699
C20—C21 1.521 (3) C12—H12A 0.9598
C20—C25 1.526 (3) C12—H12B 0.9601
C20—H20 0.9799 C12—H12C 0.9601
C25—C24 1.523 (3) C23—C22 1.525 (3)
C25—H25A 0.9700 C23—H23A 0.9701
C25—H25B 0.9701 C23—H23B 0.9700
C8—C9 1.522 (3) C9—H9A 0.9597
C8—C10 1.524 (3) C9—H9B 0.9602
C8—H8 0.9798 C9—H9C 0.9601
C19—C14 1.519 (3) C13—H13A 0.9600
C19—C18 1.526 (3) C13—H13B 0.9601
C19—H19A 0.9700 C13—H13C 0.9600
C19—H19B 0.9699 C17—C18 1.515 (3)
C15—C16 1.521 (3) C17—H17A 0.9699
C15—C14 1.523 (3) C17—H17B 0.9701
C15—H15A 0.9700 C18—H18A 0.9700
C15—H15B 0.9700 C18—H18B 0.9702
C11—C12 1.519 (3) C22—H22A 0.9700
C11—C13 1.520 (3) C22—H22B 0.9700
C11—H11 0.9801
C1—N1—C2 120.19 (16) C20—C21—H21B 109.4
C1—N2—C14 124.63 (16) H21A—C21—H21B 108.1
C1—N2—H2 117.7 C8—C10—H10A 109.3
C14—N2—H2 117.7 C8—C10—H10B 109.5
N1—C1—N3 119.62 (17) H10A—C10—H10B 109.5
N1—C1—N2 124.68 (17) C8—C10—H10C 109.6
N3—C1—N2 115.69 (17) H10A—C10—H10C 109.5
C1—N3—C20 121.52 (16) H10B—C10—H10C 109.5
C1—N3—H3 119.3 C5—C6—C7 121.4 (2)
C20—N3—H3 119.2 C5—C6—H6 119.2
C6—C7—C2 118.41 (18) C7—C6—H6 119.4
C6—C7—C11 120.38 (19) C6—C5—C4 119.83 (19)
C2—C7—C11 121.19 (17) C6—C5—H5 120.1
C7—C2—N1 120.96 (17) C4—C5—H5 120.0
C7—C2—C3 120.35 (17) C17—C16—C15 110.58 (18)
N1—C2—C3 118.49 (17) C17—C16—H16A 109.3
C4—C3—C2 118.59 (19) C15—C16—H16A 109.4
C4—C3—C8 121.83 (18) C17—C16—H16B 109.8
C2—C3—C8 119.57 (17) C15—C16—H16B 109.6
C5—C4—C3 121.3 (2) H16A—C16—H16B 108.1
C5—C4—H4 119.3 C23—C24—C25 112.42 (18)
C3—C4—H4 119.4 C23—C24—H24A 109.2
N3—C20—C21 112.63 (16) C25—C24—H24A 109.3
N3—C20—C25 109.28 (16) C23—C24—H24B 109.0
C21—C20—C25 110.17 (16) C25—C24—H24B 108.9
N3—C20—H20 108.2 H24A—C24—H24B 107.9
C21—C20—H20 108.2 C11—C12—H12A 109.3
C25—C20—H20 108.2 C11—C12—H12B 109.5
C24—C25—C20 110.97 (17) H12A—C12—H12B 109.5
C24—C25—H25A 109.3 C11—C12—H12C 109.6
C20—C25—H25A 109.4 H12A—C12—H12C 109.5
C24—C25—H25B 109.5 H12B—C12—H12C 109.5
C20—C25—H25B 109.5 C24—C23—C22 111.05 (18)
H25A—C25—H25B 108.1 C24—C23—H23A 109.5
C3—C8—C9 111.11 (18) C22—C23—H23A 109.2
C3—C8—C10 113.82 (17) C24—C23—H23B 109.4
C9—C8—C10 110.19 (18) C22—C23—H23B 109.6
C3—C8—H8 107.2 H23A—C23—H23B 108.1
C9—C8—H8 107.1 C8—C9—H9A 109.5
C10—C8—H8 107.1 C8—C9—H9B 109.3
C14—C19—C18 111.73 (17) H9A—C9—H9B 109.5
C14—C19—H19A 109.5 C8—C9—H9C 109.6
C18—C19—H19A 109.5 H9A—C9—H9C 109.5
C14—C19—H19B 109.0 H9B—C9—H9C 109.4
C18—C19—H19B 109.1 C11—C13—H13A 109.7
H19A—C19—H19B 107.9 C11—C13—H13B 109.3
C16—C15—C14 111.56 (17) H13A—C13—H13B 109.5
C16—C15—H15A 109.3 C11—C13—H13C 109.4
C14—C15—H15A 109.3 H13A—C13—H13C 109.5
C16—C15—H15B 109.4 H13B—C13—H13C 109.5
C14—C15—H15B 109.3 C16—C17—C18 111.0 (2)
H15A—C15—H15B 107.9 C16—C17—H17A 109.6
C12—C11—C13 110.6 (2) C18—C17—H17A 109.5
C12—C11—C7 111.03 (17) C16—C17—H17B 109.3
C13—C11—C7 112.47 (17) C18—C17—H17B 109.4
C12—C11—H11 107.5 H17A—C17—H17B 108.0
C13—C11—H11 107.6 C17—C18—C19 111.79 (19)
C7—C11—H11 107.4 C17—C18—H18A 109.4
N2—C14—C19 108.47 (16) C19—C18—H18A 109.5
N2—C14—C15 112.84 (16) C17—C18—H18B 109.0
C19—C14—C15 110.73 (17) C19—C18—H18B 109.1
N2—C14—H14 108.2 H18A—C18—H18B 107.9
C19—C14—H14 108.3 C21—C22—C23 110.91 (19)
C15—C14—H14 108.1 C21—C22—H22A 109.7
C22—C21—C20 110.87 (18) C23—C22—H22A 109.6
C22—C21—H21A 109.4 C21—C22—H22B 109.2
C20—C21—H21A 109.6 C23—C22—H22B 109.4
C22—C21—H21B 109.4 H22A—C22—H22B 108.0

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: KP2469).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19.
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  3. Boere, R. E., Boere, R. T., Masuda, J. & Wolmershauser, G. (2000). Can. J. Chem. 78, 1613–1619.
  4. Brazeau, A. L., Hanninen, M. M., Tuononen, H. M., Jones, N. D. & Ragogna, P. J. (2012). J. Am. Chem. Soc. 134, 5398–5414. [DOI] [PubMed]
  5. Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.
  6. Ghosh, H., Yella, R., Nath, J. & Patel, B. K. (2008). Eur. J. Org. Chem. pp. 6189–6196.
  7. Han, Y. & Huynh, H. V. (2009). Dalton Trans. pp. 2201–2209. [DOI] [PubMed]
  8. Hooft, R. W. (1998). COLLECT Enraf–Nonius, Delft, The Netherlands.
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Shen, H., Wang, Y. & Xie, Z. (2011). Org. Lett. 13, 4562–4565. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Tanatani, A., Yamaguchi, K., Azumaya, I., Fukutomi, R., Shudo, K. & Kagechika, H. (1998). J. Am. Chem. Soc. 120, 6433–6442.
  14. Yıldırım, S. Ö., Akkurt, M., Servi, S., Şekerci, M. & Heinemann, F. W. (2007). Acta Cryst. E63, o2130–o2132.
  15. Zhang, W.-X., Li, D., Wang, Z. & Xi, Z. (2009). Organometallics, 28, 882–887.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814011611/kp2469sup1.cif

e-70-0o785-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814011611/kp2469Isup2.hkl

e-70-0o785-Isup2.hkl (261.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814011611/kp2469Isup3.cml

CCDC reference: 1004128

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES