Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 4;70(Pt 7):o745–o746. doi: 10.1107/S1600536814012495

Ethyl 2-[({[4-amino-5-cyano-6-(methyl­sulfan­yl)pyridin-2-yl]carbamo­yl}meth­yl)sulfan­yl]acetate monohydrate

Mehmet Akkurt a, Joel T Mague b, Shaaban K Mohamed c,d, Bahgat R M Hussein e, Mustafa R Albayati f,*
PMCID: PMC4120541  PMID: 25161542

Abstract

The title compound, C13H16N4O3S2·H2O, crystallizes in a ‘folded’ conformation with the ester group lying over the carbamoyl moiety, with one solvent water mol­ecule. The mol­ecular conformation is stabilized by an intra­molecular C—H⋯O hydrogen bond, and an N—H⋯O hydrogen-bonding inter­action involving the lattice water mol­ecule. The packing involves N—H⋯N, N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds and consists of tilted layers running approximately parallel to the c axis, with the ester groups on the outer sides of the layers and with channels running parallel to (101).

Related literature  

For the synthesis of amino-cyano pyridines, see: Shi et al. (2005). For pyridines as inter­mediates in the synthesis of different heterocyclic compounds, see: Konda et al. (2010). For the pharmaceutical activity of functionalized pyridine derivatives, see: Dorigo et al. (1993); Dolle et al. (1995); Murata et al. (2003). For industrial applications of pyridine compounds, see: Lohray et al. (2004); Merja et al. (2004); Chaki et al. (1995); Thomae et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-70-0o745-scheme1.jpg

Experimental  

Crystal data  

  • C13H16N4O3S2·H2O

  • M r = 358.45

  • Triclinic, Inline graphic

  • a = 9.0806 (12) Å

  • b = 9.2444 (12) Å

  • c = 10.7856 (14) Å

  • α = 101.843 (2)°

  • β = 100.1750 (19)°

  • γ = 105.9480 (19)°

  • V = 825.48 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 150 K

  • 0.26 × 0.26 × 0.12 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013) T min = 0.83, T max = 0.96

  • 15313 measured reflections

  • 4292 independent reflections

  • 3773 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.099

  • S = 1.05

  • 4292 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814012495/sj5406sup1.cif

e-70-0o745-sup1.cif (24.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012495/sj5406Isup2.hkl

e-70-0o745-Isup2.hkl (235.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814012495/sj5406Isup3.cml

CCDC reference: 1005734

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2i 0.91 2.43 3.3291 (18) 168
N3—H3B⋯O1ii 0.91 2.03 2.9345 (18) 177
N4—H4A⋯O4 0.91 2.01 2.9212 (16) 174
O4—H4B⋯N2iii 0.84 2.17 3.0032 (19) 172
O4—H4C⋯O2iv 0.84 2.09 2.9122 (18) 168
C4—H4⋯O1 0.95 2.25 2.8484 (17) 121

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

supplementary crystallographic information

S1. Comment

A great deal of interest has been focused on the synthesis of functionalized pyridine derivatives due to their biological activities (Shi et al., 2005). For example, some 2-pyridine radicals are incorporated into the structures of cardiotonic agents such as milrinone (Dorigo et al., 1993) and HIV-1 specific transcriptase inhibitors (Dolle et al., 1995). Amino-cyanopyridines have been identified as IKK-β inhibitors (Murata et al., 2003). Many pyridine derivatives are of commercial interest being used as herbicides, fungicides, pesticides, and dyes (Lohray et al., 2004; Merja et al., 2004; Chaki et al., 1995; Thomae et al., 2007). Besides, pyridine derivatives are important and useful intermediates in the preparation of a variety of heterocyclic compounds (Konda et al., 2010). In view of these observations and in continuation of our work on the synthesis of heterocyclic systems for biological evaluations, we report here the synthesis and crystal structure of the title compound.

The title compound (Fig. 1) crystallizes in a "folded" conformation with the ester group lying over the carbamoyl moiety such that the dihedral angle between the best planes through the pyridyl ring and the C11–C13/O3 unit is 22.4 (1)°.

Molecular conformation is stabilized by an intramolecular C—H···O hydrogen bond, forming a S(6) motif, Fig. 1, (Bernstein et al., 1995) and an N—H···O hydrogen bonding interaction involving the lattice water molecule.

This conformation appears to result from the several hydrogen bonding interactions involving the lattice water molecule, Fig. 2 and Table 1. The packing consists of tilted layers running approximately parallel to the c axis, Fig. 3, with the ester groups on the outsides of the layers and having channels running parallel to (101), Fig. 4.

S2. Experimental

To a solution of N-[4-amino-5-cyano-6-(methylthio)pyridin-2-yl]-2-chloroacetamide (0.5 g, 1.95 mmol) in 30 ml ethanol and a few drops of triethylamine as a catalyst, ethyl mercaptoacetate (0.23 g, 1.95 mmol) was added. The reaction mixture was refluxed for 3 h at 350 K. The reaction mixture was allowed to cool down and the excess solvent was evaporated under reduced pressure. The precipitate which formed was filtered off, dried under vacuum and recrystallized from ethanol to furnish colourless crystals (yield 0.62 g; 95%). Mp. 423 – 425 K.

IR (νmax, cm-1): 3431, 3335, 3227, (NH2+NH), 2915 (CH aliph.), 2203 (C≡N), 1728 (C=O ester), 1641 (C=O amidic); 1HNMR (DMSO-d6), δ, p.p.m.: 10.34 (s, 1H, NH exchanged by D2O), 7.28 (s, 1H, CH pyridyl), 7.00 (s, 2H, NH2 exchanged by D2O), 4.11- 4.06(q, J = 8 Hz, 2H, CH2), 3.50 (s, 2H, CH2), 3.49 (s, 2H, CH2), 2.53 (s, 3H, CH3), 1.2–1.17 (t, J = 8 Hz, 3H, CH3).

S3. Refinement

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen were placed in locations derived from a difference map and their coordinates adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Figures

Fig. 1.

Fig. 1.

Perspective view of the asymmetric unit with 50% probability ellipsoids and hydrogen bonds depicted by dashed lines.

Fig. 2.

Fig. 2.

Packing projected down the b axis showing the inter- and intramolecular hydrogen bonds as dashed lines.

Fig. 3.

Fig. 3.

Packing projected along the c axis showing the tilted layers.

Fig. 4.

Fig. 4.

Packing viewed along the axis of the channels. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Crystal data

C13H16N4O3S2·H2O Z = 2
Mr = 358.45 F(000) = 376
Triclinic, P1 Dx = 1.442 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.0806 (12) Å Cell parameters from 9913 reflections
b = 9.2444 (12) Å θ = 2.4–29.2°
c = 10.7856 (14) Å µ = 0.35 mm1
α = 101.843 (2)° T = 150 K
β = 100.1750 (19)° Plate, colourless
γ = 105.9480 (19)° 0.26 × 0.26 × 0.12 mm
V = 825.48 (19) Å3

Data collection

Bruker SMART APEX CCD diffractometer 4292 independent reflections
Graphite monochromator 3773 reflections with I > 2σ(I)
Detector resolution: 8.3660 pixels mm-1 Rint = 0.034
φ and ω scans θmax = 29.2°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2013) h = −12→12
Tmin = 0.83, Tmax = 0.96 k = −12→12
15313 measured reflections l = −14→14

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.3031P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
4292 reflections Δρmax = 0.44 e Å3
210 parameters Δρmin = −0.37 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 1.14877 (5) 0.74276 (5) 0.62470 (3) 0.0316 (1)
S2 0.40426 (4) 0.82259 (4) 0.00905 (3) 0.0218 (1)
O1 0.50975 (12) 0.88281 (13) 0.30154 (9) 0.0263 (3)
O2 0.16728 (13) 0.58384 (14) 0.15365 (11) 0.0325 (3)
O3 0.38626 (12) 0.51837 (12) 0.14447 (9) 0.0244 (3)
N1 0.91851 (13) 0.79013 (14) 0.46377 (11) 0.0200 (3)
N2 1.05234 (16) 0.87115 (18) 0.92745 (12) 0.0330 (4)
N3 0.73517 (14) 0.97498 (15) 0.76432 (11) 0.0257 (3)
N4 0.73715 (13) 0.82181 (14) 0.30697 (10) 0.0204 (3)
C1 0.98222 (15) 0.80180 (16) 0.58659 (13) 0.0193 (3)
C2 0.92486 (15) 0.86183 (16) 0.69216 (12) 0.0192 (3)
C3 0.79351 (15) 0.91523 (16) 0.66734 (12) 0.0194 (3)
C4 0.72390 (15) 0.89929 (16) 0.53540 (12) 0.0207 (4)
C5 0.79125 (15) 0.83911 (15) 0.44086 (12) 0.0185 (3)
C6 1.1786 (2) 0.6781 (3) 0.46517 (17) 0.0480 (7)
C7 0.99695 (16) 0.86718 (17) 0.82188 (13) 0.0225 (4)
C8 0.60550 (15) 0.84739 (16) 0.24588 (12) 0.0194 (3)
C9 0.59280 (16) 0.82956 (17) 0.10018 (13) 0.0215 (4)
C10 0.28999 (17) 0.61849 (17) −0.02404 (13) 0.0247 (4)
C11 0.27024 (16) 0.57242 (17) 0.09924 (13) 0.0237 (4)
C12 0.3870 (2) 0.4842 (2) 0.27094 (15) 0.0315 (5)
C13 0.5180 (2) 0.4186 (2) 0.30413 (16) 0.0335 (5)
O4 0.91965 (12) 0.72768 (13) 0.12641 (10) 0.0287 (3)
H3A 0.79320 1.00160 0.84830 0.0310*
H3B 0.65660 1.01610 0.74450 0.0310*
H4 0.63290 0.92930 0.51240 0.0250*
H4A 0.79970 0.79450 0.25550 0.0240*
H6A 1.08460 0.59240 0.41090 0.0720*
H6B 1.27060 0.64170 0.47300 0.0720*
H6C 1.19680 0.76500 0.42460 0.0720*
H9A 0.61410 0.73250 0.06270 0.0260*
H9B 0.67560 0.91820 0.08960 0.0260*
H10A 0.18450 0.59830 −0.08140 0.0300*
H10B 0.34350 0.55330 −0.07120 0.0300*
H12A 0.28430 0.40770 0.26670 0.0380*
H12B 0.40330 0.58080 0.33910 0.0380*
H13A 0.50470 0.32690 0.23340 0.0500*
H13B 0.51520 0.38810 0.38570 0.0500*
H13C 0.61990 0.49790 0.31490 0.0500*
H4B 0.94980 0.77280 0.07090 0.0340*
H4C 0.99220 0.69030 0.14630 0.0340*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0310 (2) 0.0527 (3) 0.0213 (2) 0.0314 (2) 0.0049 (1) 0.0089 (2)
S2 0.0225 (2) 0.0265 (2) 0.0184 (2) 0.0128 (1) 0.0009 (1) 0.0072 (1)
O1 0.0212 (5) 0.0418 (6) 0.0196 (5) 0.0182 (4) 0.0036 (4) 0.0063 (4)
O2 0.0282 (5) 0.0444 (7) 0.0334 (6) 0.0193 (5) 0.0132 (5) 0.0134 (5)
O3 0.0255 (5) 0.0313 (5) 0.0225 (5) 0.0142 (4) 0.0094 (4) 0.0108 (4)
N1 0.0184 (5) 0.0261 (6) 0.0182 (5) 0.0121 (4) 0.0041 (4) 0.0054 (4)
N2 0.0328 (7) 0.0520 (9) 0.0211 (6) 0.0253 (6) 0.0055 (5) 0.0097 (6)
N3 0.0227 (6) 0.0408 (7) 0.0167 (5) 0.0186 (5) 0.0037 (4) 0.0041 (5)
N4 0.0185 (5) 0.0299 (6) 0.0156 (5) 0.0132 (5) 0.0038 (4) 0.0053 (4)
C1 0.0171 (6) 0.0242 (6) 0.0188 (6) 0.0111 (5) 0.0032 (5) 0.0055 (5)
C2 0.0168 (6) 0.0253 (6) 0.0167 (6) 0.0098 (5) 0.0024 (4) 0.0054 (5)
C3 0.0159 (6) 0.0238 (6) 0.0180 (6) 0.0075 (5) 0.0030 (4) 0.0039 (5)
C4 0.0175 (6) 0.0281 (7) 0.0179 (6) 0.0119 (5) 0.0022 (5) 0.0047 (5)
C5 0.0158 (5) 0.0225 (6) 0.0168 (6) 0.0078 (5) 0.0010 (4) 0.0046 (5)
C6 0.0526 (11) 0.0851 (15) 0.0276 (8) 0.0544 (11) 0.0149 (7) 0.0128 (9)
C7 0.0190 (6) 0.0314 (7) 0.0202 (6) 0.0135 (5) 0.0053 (5) 0.0056 (5)
C8 0.0180 (6) 0.0226 (6) 0.0178 (6) 0.0088 (5) 0.0022 (4) 0.0050 (5)
C9 0.0190 (6) 0.0309 (7) 0.0190 (6) 0.0128 (5) 0.0047 (5) 0.0097 (5)
C10 0.0264 (7) 0.0266 (7) 0.0197 (6) 0.0094 (6) 0.0026 (5) 0.0045 (5)
C11 0.0223 (6) 0.0249 (7) 0.0235 (6) 0.0087 (5) 0.0043 (5) 0.0053 (5)
C12 0.0360 (8) 0.0431 (9) 0.0269 (7) 0.0198 (7) 0.0151 (6) 0.0184 (7)
C13 0.0391 (9) 0.0396 (9) 0.0301 (8) 0.0198 (7) 0.0100 (6) 0.0161 (7)
O4 0.0258 (5) 0.0376 (6) 0.0301 (5) 0.0171 (5) 0.0113 (4) 0.0116 (5)

Geometric parameters (Å, º)

S1—C1 1.7550 (15) C2—C3 1.415 (2)
S1—C6 1.7952 (18) C2—C7 1.4208 (19)
S2—C9 1.7945 (15) C3—C4 1.4111 (18)
S2—C10 1.8113 (16) C4—C5 1.3776 (19)
O1—C8 1.2181 (18) C8—C9 1.5262 (18)
O2—C11 1.2051 (19) C10—C11 1.502 (2)
O3—C11 1.3436 (19) C12—C13 1.499 (3)
O3—C12 1.4613 (19) C4—H4 0.9500
O4—H4C 0.8400 C6—H6B 0.9800
O4—H4B 0.8400 C6—H6A 0.9800
N1—C1 1.3181 (18) C6—H6C 0.9800
N1—C5 1.3543 (19) C9—H9B 0.9900
N2—C7 1.1494 (19) C9—H9A 0.9900
N3—C3 1.3414 (18) C10—H10B 0.9900
N4—C5 1.4013 (16) C10—H10A 0.9900
N4—C8 1.3639 (19) C12—H12B 0.9900
N3—H3A 0.9100 C12—H12A 0.9900
N3—H3B 0.9100 C13—H13C 0.9800
N4—H4A 0.9100 C13—H13A 0.9800
C1—C2 1.4088 (19) C13—H13B 0.9800
C1—S1—C6 101.26 (8) O2—C11—C10 125.82 (14)
C9—S2—C10 101.89 (7) O3—C12—C13 108.59 (14)
C11—O3—C12 115.32 (12) C5—C4—H4 121.00
H4B—O4—H4C 102.00 C3—C4—H4 121.00
C1—N1—C5 116.87 (12) S1—C6—H6A 109.00
C5—N4—C8 127.62 (12) S1—C6—H6B 109.00
H3A—N3—H3B 120.00 H6A—C6—H6B 110.00
C3—N3—H3B 119.00 H6A—C6—H6C 109.00
C3—N3—H3A 119.00 S1—C6—H6C 109.00
C5—N4—H4A 116.00 H6B—C6—H6C 109.00
C8—N4—H4A 116.00 S2—C9—H9B 109.00
S1—C1—N1 119.69 (11) C8—C9—H9A 109.00
S1—C1—C2 116.86 (10) S2—C9—H9A 109.00
N1—C1—C2 123.45 (13) H9A—C9—H9B 108.00
C1—C2—C3 119.22 (12) C8—C9—H9B 109.00
C1—C2—C7 120.40 (13) S2—C10—H10A 109.00
C3—C2—C7 120.38 (12) C11—C10—H10A 109.00
N3—C3—C4 121.32 (13) C11—C10—H10B 109.00
N3—C3—C2 121.69 (12) H10A—C10—H10B 108.00
C2—C3—C4 116.98 (12) S2—C10—H10B 109.00
C3—C4—C5 118.29 (13) O3—C12—H12A 110.00
N1—C5—N4 110.75 (11) C13—C12—H12A 110.00
N4—C5—C4 124.09 (13) C13—C12—H12B 110.00
N1—C5—C4 125.16 (12) O3—C12—H12B 110.00
N2—C7—C2 178.60 (17) H12A—C12—H12B 108.00
O1—C8—C9 123.62 (13) C12—C13—H13B 110.00
O1—C8—N4 123.88 (12) C12—C13—H13C 109.00
N4—C8—C9 112.49 (12) C12—C13—H13A 109.00
S2—C9—C8 114.23 (10) H13A—C13—H13C 109.00
S2—C10—C11 111.95 (10) H13B—C13—H13C 109.00
O3—C11—C10 110.84 (12) H13A—C13—H13B 109.00
O2—C11—O3 123.32 (13)
C6—S1—C1—N1 −0.35 (15) S1—C1—C2—C7 −2.41 (19)
C6—S1—C1—C2 −179.63 (14) N1—C1—C2—C3 −1.0 (2)
C10—S2—C9—C8 −83.84 (12) N1—C1—C2—C7 178.34 (14)
C9—S2—C10—C11 63.79 (12) C1—C2—C3—N3 −179.28 (14)
C12—O3—C11—O2 −4.3 (2) C1—C2—C3—C4 2.2 (2)
C12—O3—C11—C10 174.39 (12) C7—C2—C3—N3 1.4 (2)
C11—O3—C12—C13 177.43 (13) C7—C2—C3—C4 −177.10 (14)
C5—N1—C1—S1 −179.33 (11) N3—C3—C4—C5 179.07 (14)
C5—N1—C1—C2 −0.1 (2) C2—C3—C4—C5 −2.4 (2)
C1—N1—C5—N4 179.28 (13) C3—C4—C5—N1 1.5 (2)
C1—N1—C5—C4 −0.2 (2) C3—C4—C5—N4 −177.88 (13)
C8—N4—C5—N1 174.69 (14) O1—C8—C9—S2 −13.0 (2)
C8—N4—C5—C4 −5.9 (2) N4—C8—C9—S2 168.00 (10)
C5—N4—C8—O1 −3.9 (2) S2—C10—C11—O2 86.96 (18)
C5—N4—C8—C9 175.09 (13) S2—C10—C11—O3 −91.73 (13)
S1—C1—C2—C3 178.25 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3A···N2i 0.91 2.43 3.3291 (18) 168
N3—H3B···O1ii 0.91 2.03 2.9345 (18) 177
N4—H4A···O4 0.91 2.01 2.9212 (16) 174
O4—H4B···N2iii 0.84 2.17 3.0032 (19) 172
O4—H4C···O2iv 0.84 2.09 2.9122 (18) 168
C4—H4···O1 0.95 2.25 2.8484 (17) 121

Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) −x+1, −y+2, −z+1; (iii) x, y, z−1; (iv) x+1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5406).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Brandenburg, K. & Putz, H. (2012). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2013). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chaki, H., Yamabe, H., Sugano, M., Morita, S., Bessho, T., Tabata, R., Saito, K. I., Egawa, M., Tobe, A. & Morinaka, Y. (1995). Bioorg. Med. Chem. Lett 5, 1495–1500.
  5. Dolle, V., Nguyen, E. C. H., Aubertin, A. M., Kirm, A. M., Andreola, L., Jamieson, G., Tarrago-Litvak, L. & Bisagni, E. (1995). J. Med. Chem. 38, 4679–4686. [DOI] [PubMed]
  6. Dorigo, P., Gaion, R. M., Belluco, P., Fraccarollo, D., Maragano, I., Bombien, G., Benelollo, F., Mostil, L. & Orsini, F. (1993). J. Med. Chem. 36, 2475–2484. [DOI] [PubMed]
  7. Konda, S. G., Khedkar, V. T. & Dawane, B. S. (2010). J. Chem. Pharm. Res. 2, 1–6.
  8. Lohray, B. B., Lohray, V. B. & Srivastava, B. K. (2004). Bioorg. Med. Chem. 17, 4557–4564. [DOI] [PubMed]
  9. Merja, B. C., Joshi, A. M. & Parikh, K. A. (2004). Indian J. Chem. Sect. B, 4, 909–912.
  10. Murata, T., Shimada, M., Sakakibara, S., Yoshino, T. & Kadono, H. (2003). Bioorg. Med. Chem. Lett. 13, 913–918. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Shi, F., Shujiang Tu, S., Fang, F. & Li, T. (2005). Arkivoc, i, 137–142.
  13. Thomae, D., Kirsch, G. & Seck, P. (2007). Synthesis, 7, 1027–1032.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814012495/sj5406sup1.cif

e-70-0o745-sup1.cif (24.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012495/sj5406Isup2.hkl

e-70-0o745-Isup2.hkl (235.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814012495/sj5406Isup3.cml

CCDC reference: 1005734

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES