Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 23;70(Pt 7):36–38. doi: 10.1107/S160053681401191X

Crystal structure of chlorido­(piperidine-κN)(quinoline-2-carboxyl­ato-κ2 N,O)platinum(II)

Chi Nguyen Thi Thanh a, Ngan Nguyen Bich a, Luc Van Meervelt b,*
PMCID: PMC4120542  PMID: 25161501

The platinum(II) complex with notable antitumor activity shows a slightly distorted square-planar coordination and intramolecular C—H⋯Cl and intermolecular N—H⋯Cl and C—H⋯O hydrogen bonds.

Keywords: crystal structure, cis-platinum(II) complexes, hydrogen bonding, anti­cancer activity

Abstract

The title compound, [Pt(C10H6NO2)Cl(C5H11N)], crystallizes with one mol­ecule in the asymmetric unit. The PtII cation has a slightly distorted square-planar coordination environment defined by a chloride anion, the quinoline N atom and a carboxyl­ate O atom of the bidentate quinaldate ligand and a piperidine N atom. An intra­molecular C—H⋯Cl hydrogen bond occurs. In the crystal, mol­ecules are stacked into columns along the c axis by the formation of N—H⋯Cl and C—H⋯O hydrogen bonds.

Chemical context  

The title compound belongs to a series of platinum(II) complexes bearing piperidine (pip) as a ligand, which exhibit notable anti­tumour activity (Da et al., 2001; Rounaq Ali Khan et al., 2000; Solin et al., 1982). In comparison with the earlier reported complex [PtCl2(pip)(quinoline)] (Nguyen Thi Thanh et al., 2014), the quinoline ligand is replaced by an N,O-bidentate quinaldate ligand. It is inter­esting to note that in the [PtCl2(pip)(quinoline)] complex, the quinoline and piperidine ligands are arranged in cis positions (Nguyen Thi Thanh et al., 2014). In the title compound, the quinoline ring of the quinaldate ligand occupies a trans position with respect to the piperidine ring. We suggest that in the reaction solution there exists a chemical equilibrium between the neutral and bipolar forms of quinaldic acid. Thus, the quinaldic acid in its ionic form coordinates with PtII via the O atom of the carboxyl­ate group first and in a cis position with respect to piperidine based on the trans effect. In a second step, the quinaldic acid coordin­ates with PtII also via its N atom, resulting in the cyclic complex.graphic file with name e-70-00036-scheme1.jpg

The anti­cancer activity of the title compound was tested according to the method described in Skehan et al. (1990) on four human cancer cells of HepG2, RD, MCF7 and Fl. The IC50 values calculated based on OD values taken on an Elisa instrument at 515–540 nm are 4.46, 2.59, >10 and 5.60 µg ml−1, respectively.

Structural commentary  

The title complex crystallizes with one mol­ecule per asymmetric unit (Fig. 1). The PtII cation is surrounded by two N atoms, one O atom and one Cl atom, resulting in a slightly distorted square-planar coordination environment [angles around platinum: O1—Pt1—N1 81.38 (9), O1—Pt1—N2 88.26 (9), Cl1—Pt1—N2 84.26 (7) and Cl1—Pt1—N1 106.11 (7)°]. The Cl and the PtII atoms are displaced from the least-squares plane of the quinoline ring and all other coord­inating atoms by 0.2936 (7) and 0.0052 (1) Å, respectively. The piperidine ring adopts a chair conformation and is almost perpendicular to the coordination plane of the PtII cation [dihedral angle between the best plane through the piperidine ring and the four atoms coordinating to the PtII cation = 79.66 (13)°]. Bond lengths are normal and agree well with related platinum compounds (Cambridge Structural Database, version 5.34; Allen, 2002). There is an intra­molecular hydrogen bond between atom Cl1 and atom H8 (Fig. 1 and Table 1).

Figure 1.

Figure 1

View of the mol­ecular structure of the title compound, showing the atom-labelling scheme, with ellipsoids drawn at the 50% probability level. The intra­molecular C—H⋯Cl hydrogen bond is shown as a green dashed line.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1i 0.93 2.74 3.624 (2) 160
C3—H3⋯O2ii 0.96 2.53 3.360 (4) 145
C8—H8⋯Cl1 0.95 2.40 3.268 (3) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features  

The crystal packing is characterized by N—H⋯Cl and C—H⋯O hydrogen bonds (Table 1). Mol­ecules are arranged into columns along the c axis (Fig. 2) with the piperidine rings all directed towards the center of the column, favouring hydro­phobic inter­actions.

Figure 2.

Figure 2

View of the crystal packing for the title compound, with (N/C)—H⋯Cl and C—H⋯O hydrogen bonds drawn as green and red dashed lines, respectively. [Symmetry codes: (i) x, −y + 1, z − Inline graphic; (ii) −x + 1, y, −z + Inline graphic.]

Synthesis and crystallization  

The starting complex K[PtCl3(piperidine)] (0.425 g, 1 mmol), prepared according to the synthetic protocol of Da et al. (2001), was dissolved in water (10 ml) and filtered to afford a clear solution. To this solution, quinaldic acid (1.2 mmol) in an aqueous ethanol solution (5 ml, 1:1 v/v) was added gradually while stirring at room temperature for 1 h. The reaction mixture was stirred further for 4 h. The precipitated yellow substance was filtered off and washed consecutively with a 0.1 M HCl solution (2 × 2 ml), warm water (3 × 2 ml) and cold ethanol (2 ml). The product was then dried in a vacuum at 323 K for 4 h. The yield was 80%. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation from an ethanol–water (1:1 v/v) solution at room temperature. Positive ESI–MS: m/z 1973 [4M + Na]+, 1483 [3M + Na]+, 998 [2M + Na]+, 510 [M + Na]+, 977 [2M + H]+, 489 [M + H]+; IR (KBr) cm−1: 3192 (νNH); 3080, 2930, 2866 (νCH); 1678 (νC=O); 1592, 1459 (νC=C arom); 1334 (νC—O); 1H NMR (δ p.p.m; CDCl3, 500Hz): 9.50 (1H, d, 3 J = 9.0 Hz, Ar-H), 8.51 (1H, d, 3 J = 8.0 Hz, Ar-H), 8.06 (1H, d, 3 J = 8.0 Hz, Ar-H), 7.91–7.88 (2H, ov, Ar-H), 7.71 (1H, t, 3 J = 8.0 Hz, Ar-H), 3.52 (2Hα e, d, 2 J ae = 12.5 Hz, C5 H10NH), 3.27 (2Hα a, q, 2 J ae, 3 J aa, 3 J aa(NH) = 12.5 Hz, C5 H10NH), 1.76–1.61 (4Hβ, 2Hγ, ov, C5 H10NH), 4.00 (1H, br, C5H10NH).

Refinement  

All H atoms were refined using a riding model, with C—H = 0.95 Å for aromatic, C—H = 0.99 Å for CH2 and N—H = 0.93 Å for amino H atoms, with U iso = 1.2U eq(C,N).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681401191X/wm0005sup1.cif

e-70-00036-sup1.cif (19.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681401191X/wm0005Isup2.hkl

e-70-00036-Isup2.hkl (158.6KB, hkl)

CCDC reference: 1004305

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 2. Experimental details.

Crystal data
Chemical formula [Pt(C10H6NO2)Cl(C5H11N)]
M r 487.85
Crystal system, space group Monoclinic, C2/c
Temperature (K) 200
a, b, c (Å) 22.7542 (8), 9.7540 (3), 14.0139 (5)
β (°) 95.542 (3)
V3) 3095.78 (19)
Z 8
Radiation type Mo Kα
μ (mm−1) 9.24
Crystal size (mm) 0.3 × 0.3 × 0.2
 
Data collection
Diffractometer Agilent SuperNova (single source at offset, Eos detector)
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012)
T min, T max 0.473, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 31419, 3166, 2951
R int 0.026
(sin θ/λ)max−1) 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.015, 0.035, 1.12
No. of reflections 3166
No. of parameters 190
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.80, −0.53

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 and SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

Acknowledgments

The authors thank the Vietnamese Ministry of Education (project No. B2013-17-39) for financial support and the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.

supplementary crystallographic information

Crystal data

[Pt(C10H6NO2)Cl(C5H11N)] F(000) = 1856
Mr = 487.85 Dx = 2.093 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.7107 Å
a = 22.7542 (8) Å Cell parameters from 16449 reflections
b = 9.7540 (3) Å θ = 3.4–29.8°
c = 14.0139 (5) Å µ = 9.24 mm1
β = 95.542 (3)° T = 200 K
V = 3095.78 (19) Å3 Block, yellow
Z = 8 0.3 × 0.3 × 0.2 mm

Data collection

Agilent SuperNova (single source at offset, Eos detector) diffractometer 3166 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2951 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.026
Detector resolution: 15.9631 pixels mm-1 θmax = 26.4°, θmin = 2.8°
ω scans h = −28→28
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −12→12
Tmin = 0.473, Tmax = 1.000 l = −17→17
31419 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.035 H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0118P)2 + 9.138P] where P = (Fo2 + 2Fc2)/3
3166 reflections (Δ/σ)max = 0.002
190 parameters Δρmax = 0.80 e Å3
0 restraints Δρmin = −0.53 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.29348 (12) 0.6098 (3) 0.5028 (2) 0.0268 (6)
C2 0.25609 (13) 0.5746 (3) 0.4211 (2) 0.0327 (7)
H2 0.2227 0.5176 0.4264 0.039*
C3 0.26831 (14) 0.6232 (3) 0.3338 (2) 0.0354 (7)
H3 0.2432 0.6014 0.2777 0.042*
C4 0.31811 (14) 0.7052 (3) 0.3278 (2) 0.0324 (7)
C5 0.33360 (18) 0.7554 (4) 0.2386 (2) 0.0432 (8)
H5 0.3085 0.7372 0.1818 0.052*
C6 0.38367 (19) 0.8290 (4) 0.2332 (2) 0.0516 (10)
H6 0.3934 0.8625 0.1730 0.062*
C7 0.42105 (18) 0.8556 (4) 0.3167 (2) 0.0503 (9)
H7 0.4565 0.9057 0.3121 0.060*
C8 0.40769 (16) 0.8111 (3) 0.4047 (2) 0.0400 (8)
H8 0.4336 0.8309 0.4603 0.048*
C9 0.35561 (14) 0.7362 (3) 0.4130 (2) 0.0285 (6)
C10 0.28109 (13) 0.5514 (3) 0.5984 (2) 0.0318 (7)
C11 0.42217 (15) 0.5840 (3) 0.8206 (2) 0.0402 (8)
H11A 0.4518 0.5401 0.7832 0.048*
H11B 0.3857 0.5281 0.8125 0.048*
C12 0.44551 (16) 0.5867 (4) 0.9262 (3) 0.0479 (9)
H12A 0.4509 0.4914 0.9499 0.058*
H12B 0.4845 0.6323 0.9333 0.058*
C13 0.40413 (18) 0.6613 (5) 0.9861 (2) 0.0550 (10)
H13A 0.4225 0.6690 1.0528 0.066*
H13B 0.3671 0.6083 0.9869 0.066*
C14 0.39015 (16) 0.8039 (4) 0.9459 (2) 0.0443 (9)
H14A 0.4263 0.8607 0.9527 0.053*
H14B 0.3604 0.8481 0.9828 0.053*
C15 0.36650 (13) 0.7956 (3) 0.8404 (2) 0.0337 (7)
H15A 0.3285 0.7455 0.8344 0.040*
H15B 0.3591 0.8893 0.8150 0.040*
Cl1 0.45271 (3) 0.88368 (8) 0.62745 (5) 0.03279 (16)
N1 0.34113 (10) 0.6894 (2) 0.50082 (16) 0.0255 (5)
N2 0.40915 (10) 0.7240 (2) 0.78242 (16) 0.0264 (5)
H2A 0.4443 0.7733 0.7893 0.032*
O1 0.31888 (9) 0.5856 (2) 0.66939 (14) 0.0369 (5)
O2 0.23904 (10) 0.4760 (3) 0.60452 (16) 0.0433 (6)
Pt1 0.380802 (4) 0.720087 (11) 0.639573 (7) 0.02386 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0264 (14) 0.0266 (14) 0.0271 (14) 0.0071 (12) 0.0005 (11) −0.0021 (12)
C2 0.0288 (15) 0.0374 (17) 0.0308 (15) 0.0016 (13) −0.0034 (12) −0.0040 (13)
C3 0.0374 (16) 0.0387 (18) 0.0281 (15) 0.0067 (14) −0.0071 (12) −0.0063 (13)
C4 0.0425 (17) 0.0282 (16) 0.0256 (15) 0.0079 (13) −0.0006 (12) −0.0035 (12)
C5 0.067 (2) 0.0370 (18) 0.0247 (16) −0.0022 (17) −0.0017 (15) −0.0011 (13)
C6 0.086 (3) 0.042 (2) 0.0269 (16) −0.014 (2) 0.0094 (17) 0.0007 (15)
C7 0.071 (3) 0.046 (2) 0.0345 (18) −0.0231 (19) 0.0125 (17) −0.0054 (16)
C8 0.052 (2) 0.0383 (18) 0.0298 (16) −0.0106 (15) 0.0033 (14) −0.0039 (13)
C9 0.0397 (16) 0.0213 (14) 0.0242 (14) 0.0045 (12) 0.0010 (12) −0.0031 (11)
C10 0.0282 (15) 0.0393 (17) 0.0268 (14) 0.0012 (13) −0.0028 (12) −0.0017 (13)
C11 0.0421 (18) 0.0303 (17) 0.0443 (19) 0.0005 (14) −0.0153 (15) 0.0051 (14)
C12 0.051 (2) 0.040 (2) 0.048 (2) −0.0110 (16) −0.0235 (17) 0.0172 (16)
C13 0.060 (2) 0.072 (3) 0.0299 (17) −0.024 (2) −0.0086 (16) 0.0155 (18)
C14 0.0404 (18) 0.065 (3) 0.0262 (16) −0.0016 (17) −0.0010 (13) −0.0030 (15)
C15 0.0296 (15) 0.0433 (19) 0.0275 (15) 0.0027 (13) −0.0014 (12) 0.0001 (13)
Cl1 0.0348 (4) 0.0335 (4) 0.0292 (3) −0.0071 (3) −0.0013 (3) −0.0006 (3)
N1 0.0274 (12) 0.0244 (12) 0.0241 (11) 0.0033 (9) −0.0002 (9) −0.0026 (9)
N2 0.0240 (11) 0.0299 (13) 0.0242 (12) −0.0014 (10) −0.0028 (9) 0.0022 (10)
O1 0.0349 (11) 0.0493 (14) 0.0251 (10) −0.0115 (10) −0.0044 (9) 0.0061 (10)
O2 0.0350 (12) 0.0585 (16) 0.0350 (12) −0.0179 (11) −0.0031 (9) 0.0032 (11)
Pt1 0.02348 (6) 0.02556 (6) 0.02184 (6) 0.00129 (4) −0.00148 (4) −0.00049 (4)

Geometric parameters (Å, º)

C1—C2 1.402 (4) C11—H11B 0.9900
C1—C10 1.507 (4) C11—C12 1.524 (4)
C1—N1 1.336 (4) C11—N2 1.486 (4)
C2—H2 0.9500 C12—H12A 0.9900
C2—C3 1.365 (4) C12—H12B 0.9900
C3—H3 0.9500 C12—C13 1.507 (6)
C3—C4 1.396 (5) C13—H13A 0.9900
C4—C5 1.419 (4) C13—H13B 0.9900
C4—C9 1.432 (4) C13—C14 1.522 (5)
C5—H5 0.9500 C14—H14A 0.9900
C5—C6 1.355 (5) C14—H14B 0.9900
C6—H6 0.9500 C14—C15 1.526 (4)
C6—C7 1.403 (5) C15—H15A 0.9900
C7—H7 0.9500 C15—H15B 0.9900
C7—C8 1.369 (5) C15—N2 1.497 (4)
C8—H8 0.9500 Cl1—Pt1 2.3035 (7)
C8—C9 1.407 (5) N1—Pt1 2.085 (2)
C9—N1 1.382 (4) N2—H2A 0.9300
C10—O1 1.295 (3) N2—Pt1 2.043 (2)
C10—O2 1.217 (4) O1—Pt1 1.999 (2)
C11—H11A 0.9900
C2—C1—C10 118.8 (3) H12A—C12—H12B 107.9
N1—C1—C2 123.8 (3) C13—C12—C11 111.8 (3)
N1—C1—C10 117.4 (2) C13—C12—H12A 109.3
C1—C2—H2 120.4 C13—C12—H12B 109.3
C3—C2—C1 119.1 (3) C12—C13—H13A 109.5
C3—C2—H2 120.4 C12—C13—H13B 109.5
C2—C3—H3 120.3 C12—C13—C14 110.8 (3)
C2—C3—C4 119.3 (3) H13A—C13—H13B 108.1
C4—C3—H3 120.3 C14—C13—H13A 109.5
C3—C4—C5 121.6 (3) C14—C13—H13B 109.5
C3—C4—C9 119.5 (3) C13—C14—H14A 109.5
C5—C4—C9 118.9 (3) C13—C14—H14B 109.5
C4—C5—H5 119.5 C13—C14—C15 110.6 (3)
C6—C5—C4 120.9 (3) H14A—C14—H14B 108.1
C6—C5—H5 119.5 C15—C14—H14A 109.5
C5—C6—H6 120.1 C15—C14—H14B 109.5
C5—C6—C7 119.8 (3) C14—C15—H15A 109.4
C7—C6—H6 120.1 C14—C15—H15B 109.4
C6—C7—H7 119.2 H15A—C15—H15B 108.0
C8—C7—C6 121.6 (3) N2—C15—C14 111.4 (3)
C8—C7—H7 119.2 N2—C15—H15A 109.4
C7—C8—H8 120.0 N2—C15—H15B 109.4
C7—C8—C9 120.1 (3) C1—N1—C9 118.3 (2)
C9—C8—H8 120.0 C1—N1—Pt1 110.10 (18)
C8—C9—C4 118.7 (3) C9—N1—Pt1 131.61 (19)
N1—C9—C4 119.9 (3) C11—N2—C15 110.5 (2)
N1—C9—C8 121.4 (3) C11—N2—H2A 107.4
O1—C10—C1 114.8 (3) C11—N2—Pt1 111.61 (18)
O2—C10—C1 120.5 (3) C15—N2—H2A 107.4
O2—C10—O1 124.7 (3) C15—N2—Pt1 112.37 (17)
H11A—C11—H11B 107.9 Pt1—N2—H2A 107.4
C12—C11—H11A 109.2 C10—O1—Pt1 115.95 (19)
C12—C11—H11B 109.2 N1—Pt1—Cl1 106.11 (7)
N2—C11—H11A 109.2 N2—Pt1—Cl1 84.26 (7)
N2—C11—H11B 109.2 N2—Pt1—N1 169.63 (9)
N2—C11—C12 111.9 (3) O1—Pt1—Cl1 171.99 (6)
C11—C12—H12A 109.3 O1—Pt1—N1 81.38 (9)
C11—C12—H12B 109.3 O1—Pt1—N2 88.26 (9)
C1—C2—C3—C4 0.8 (5) C9—N1—Pt1—Cl1 8.2 (3)
C1—C10—O1—Pt1 5.1 (3) C9—N1—Pt1—N2 −171.6 (4)
C1—N1—Pt1—Cl1 −171.51 (17) C9—N1—Pt1—O1 −174.7 (3)
C1—N1—Pt1—N2 8.6 (6) C10—C1—C2—C3 −177.6 (3)
C1—N1—Pt1—O1 5.58 (18) C10—C1—N1—C9 175.6 (2)
C2—C1—C10—O1 177.8 (3) C10—C1—N1—Pt1 −4.7 (3)
C2—C1—C10—O2 −0.7 (4) C10—O1—Pt1—N1 −6.0 (2)
C2—C1—N1—C9 −2.1 (4) C10—O1—Pt1—N2 174.6 (2)
C2—C1—N1—Pt1 177.6 (2) C11—C12—C13—C14 −53.6 (4)
C2—C3—C4—C5 178.4 (3) C11—N2—Pt1—Cl1 −129.0 (2)
C2—C3—C4—C9 0.4 (4) C11—N2—Pt1—N1 50.9 (6)
C3—C4—C5—C6 −176.6 (3) C11—N2—Pt1—O1 53.9 (2)
C3—C4—C9—C8 175.7 (3) C12—C11—N2—C15 −56.3 (3)
C3—C4—C9—N1 −2.5 (4) C12—C11—N2—Pt1 177.9 (2)
C4—C5—C6—C7 0.3 (6) C12—C13—C14—C15 54.5 (4)
C4—C9—N1—C1 3.3 (4) C13—C14—C15—N2 −56.9 (4)
C4—C9—N1—Pt1 −176.4 (2) C14—C15—N2—C11 57.6 (3)
C5—C4—C9—C8 −2.3 (4) C14—C15—N2—Pt1 −177.0 (2)
C5—C4—C9—N1 179.4 (3) C15—N2—Pt1—Cl1 106.25 (19)
C5—C6—C7—C8 −1.3 (6) C15—N2—Pt1—N1 −73.9 (6)
C6—C7—C8—C9 0.3 (6) C15—N2—Pt1—O1 −70.9 (2)
C7—C8—C9—C4 1.5 (5) N1—C1—C2—C3 0.0 (5)
C7—C8—C9—N1 179.7 (3) N1—C1—C10—O1 0.0 (4)
C8—C9—N1—C1 −174.9 (3) N1—C1—C10—O2 −178.5 (3)
C8—C9—N1—Pt1 5.4 (4) N2—C11—C12—C13 54.9 (4)
C9—C4—C5—C6 1.4 (5) O2—C10—O1—Pt1 −176.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2A···Cl1i 0.93 2.74 3.624 (2) 160
C3—H3···O2ii 0.96 2.53 3.360 (4) 145
C8—H8···Cl1 0.95 2.40 3.268 (3) 152

Symmetry codes: (i) −x+1, y, −z+3/2; (ii) x, −y+1, z−1/2.

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  3. Da, T. T., Vu, D. B. & Dinh, N. H. (2001). J. Pharm. Sci. (Vietnam), 6, 6–8.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Nguyen Thi Thanh, C., Nguyen Bich, N. & Van Meervelt, L. (2014). Acta Cryst. C70, 297–301. [DOI] [PubMed]
  6. Rounaq Ali Khan, S., Guzman-Jimenez, I., Whitmire, K. H. & Khokhar, A. R. (2000). Polyhedron, 19, 975–981.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S. & Boyd, M. R. (1990). J. Natl Cancer Inst. 82, 1107–1112. [DOI] [PubMed]
  9. Solin, T., Matsumoto, K. & Fuwa, K. (1982). Inorg. Chim. Acta, 65, L172–L172.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681401191X/wm0005sup1.cif

e-70-00036-sup1.cif (19.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681401191X/wm0005Isup2.hkl

e-70-00036-Isup2.hkl (158.6KB, hkl)

CCDC reference: 1004305

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES