Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 25;70(Pt 7):o807. doi: 10.1107/S1600536814014214

Diafenthiuron: 1-tert-butyl-3-(2,6-diisopropyl-4-phen­oxy­phen­yl)thio­urea

Youngeun Jeon a, Gihaeng Kang a, Seonghwa Cho a, Tae Ho Kim a,*
PMCID: PMC4120544  PMID: 25161588

Abstract

The title compound, C23H32N2OS, is a thio­urea-based insecticide. The dihedral angle between the phenyl ring and the diisopropyl benzene ring plane is 73.18 (6)°, while that between the plane of the thio­urea group and the diisopropyl benzene ring is 86.00 (5)°. Disorder was modelled for the S atom and the two methyl C atoms of the isopropyl group over two sets of sites with an occupancy ratio of 0.742 (4):0.258 (4). In the crystal, N—H⋯S hydrogen bonds link adjacent mol­ecules, forming R 2 2(8) inversion dimers that pack into chains along the b-axis direction.

Keywords: crystal structure

Related literature  

For information on the toxicity and insecticidal properties of the title compound, see: Ishaaya et al. (1993). For a related structure, see: Zhang et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-70-0o807-scheme1.jpg

Experimental  

Crystal data  

  • C23H32N2OS

  • M r = 384.57

  • Monoclinic, Inline graphic

  • a = 12.8656 (2) Å

  • b = 17.9807 (3) Å

  • c = 10.1671 (2) Å

  • β = 102.655 (1)°

  • V = 2294.84 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 173 K

  • 0.50 × 0.30 × 0.19 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.927, T max = 0.971

  • 39926 measured reflections

  • 5279 independent reflections

  • 4117 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.119

  • S = 1.03

  • 5279 reflections

  • 281 parameters

  • 19 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814014214/sj5414sup1.cif

e-70-0o807-sup1.cif (32.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814014214/sj5414Isup2.hkl

e-70-0o807-Isup2.hkl (258.5KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814014214/sj5414Isup3.cml

CCDC reference: 1008806

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯S1i 0.88 2.53 3.3739 (15) 160

Symmetry code: (i) Inline graphic.

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2012R1A1B3003337).

supplementary crystallographic information

S1. Comment

Diafenthiuron (systematic name: 1 - t-butyl-3-(2,6-diisopropyl-4-phenoxyphenyl)thiourea), is a type of thiourea insecticide which acts specifically on phytophagous mites, whiteflies and aphids (Ishaaya et al., 1993), and its crystal structure is reported herein. In this compound (Fig. 1), the dihedral angle between the phenyl ring and diisopropyl phenyl ring is 73.18 (6)°. The diheral angle between thiourea group plane and the diisopropyl phenyl is 86.00 (5)°. Disorder was modeled for one S atom (S1) and two C atoms (C16 and C17) of isopropyl group over two sets of sites with an occupancy ratio of 0.742 (4):0.258 (4). All bond lengths and bond angles are normal and comparable to those observed in the crystal structure of a similar compound (Zhang et al., 2010). In the crystal structure (Fig. 2), N2–H2N···S1 hydrogen bonds link adjacent molecules to form R22(8) inversion dimers (Bernstein et al., 1995), packed into chains along the b axis direction.

S2. Experimental

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a solution in CH2Cl2 gave single crystals suitable for X-ray analysis.

S3. Refinement

During refinement, one S1 atom and two C16 and C17 atoms of the isopropyl group were found to be disordered and were refined over two sites. The corresponding site-occupation factors were refined so that their sum was unity [0.742 (4) and 0.258 (4)]. All H-atoms were positioned geometrically and refined using a riding model with d(N—H) = 0.88 Å, Uiso = 1.2Ueq(C) for amine N—H, d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic C—H, d(C—H) = 0.98 Å, Uiso = 1.5Ueq(C) for CH3 groups, and d(C—H) = 1.00 Å, Uiso = 1.2Ueq(C) for Csp3—H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius. Only atoms of the major disorder components are shown.

Fig. 2.

Fig. 2.

Crystal packing of the title compound with N—H···S hydrogen bonds shown as dashed lines. H atoms bonded to C atoms have been omitted for clarity. Only atoms of the major disorder components are shown.

Crystal data

C23H32N2OS F(000) = 832
Mr = 384.57 Dx = 1.113 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9944 reflections
a = 12.8656 (2) Å θ = 2.6–26.5°
b = 17.9807 (3) Å µ = 0.16 mm1
c = 10.1671 (2) Å T = 173 K
β = 102.655 (1)° Block, colourless
V = 2294.84 (7) Å3 0.50 × 0.30 × 0.19 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 5279 independent reflections
Radiation source: fine-focus sealed tube 4117 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
φ and ω scans θmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −16→16
Tmin = 0.927, Tmax = 0.971 k = −23→22
39926 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.7379P] where P = (Fo2 + 2Fc2)/3
5279 reflections (Δ/σ)max = 0.001
281 parameters Δρmax = 0.25 e Å3
19 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.56002 (13) 1.08803 (6) 0.37193 (18) 0.0552 (3) 0.742 (4)
S1' 0.5179 (4) 1.0709 (2) 0.3222 (4) 0.0580 (10) 0.258 (4)
O1 0.85776 (9) 0.69041 (6) 0.51145 (12) 0.0536 (3)
N1 0.69688 (10) 1.00011 (7) 0.27909 (12) 0.0403 (3)
H1N 0.7318 0.9577 0.2897 0.048*
N2 0.61785 (9) 0.95071 (6) 0.43823 (12) 0.0369 (3)
H2N 0.5680 0.9532 0.4851 0.044*
C1 0.72543 (12) 1.05027 (8) 0.17740 (15) 0.0419 (3)
C2 0.80932 (13) 1.00766 (9) 0.12308 (17) 0.0482 (4)
H2A 0.8690 0.9951 0.1976 0.072*
H2B 0.8350 1.0386 0.0575 0.072*
H2C 0.7779 0.9619 0.0792 0.072*
C3 0.62948 (15) 1.06426 (14) 0.0633 (2) 0.0745 (6)
H3A 0.6029 1.0168 0.0218 0.112*
H3B 0.6503 1.0963 −0.0045 0.112*
H3C 0.5734 1.0887 0.0989 0.112*
C4 0.77343 (18) 1.12213 (10) 0.2428 (2) 0.0714 (6)
H4A 0.7195 1.1494 0.2781 0.107*
H4B 0.7977 1.1527 0.1757 0.107*
H4C 0.8340 1.1105 0.3168 0.107*
C5 0.62684 (12) 1.00853 (8) 0.35760 (15) 0.0426 (4)
C6 0.68322 (10) 0.88509 (7) 0.45404 (13) 0.0315 (3)
C7 0.65135 (10) 0.82379 (7) 0.37036 (13) 0.0328 (3)
C8 0.71330 (11) 0.75966 (8) 0.39362 (14) 0.0358 (3)
H8 0.6936 0.7172 0.3382 0.043*
C9 0.80322 (11) 0.75739 (7) 0.49667 (15) 0.0362 (3)
C10 0.83576 (11) 0.81891 (7) 0.57626 (15) 0.0364 (3)
H10 0.8988 0.8168 0.6452 0.044*
C11 0.77584 (11) 0.88429 (7) 0.55526 (14) 0.0344 (3)
C12 0.55233 (12) 0.82694 (9) 0.25731 (15) 0.0431 (4)
H12 0.5328 0.8805 0.2404 0.052*
C13 0.45888 (14) 0.78824 (13) 0.2968 (2) 0.0728 (6)
H13A 0.4768 0.7359 0.3174 0.109*
H13B 0.3963 0.7912 0.2221 0.109*
H13C 0.4432 0.8125 0.3765 0.109*
C14 0.57182 (19) 0.79454 (14) 0.12726 (19) 0.0823 (7)
H14A 0.6319 0.8203 0.1025 0.123*
H14B 0.5079 0.8009 0.0554 0.123*
H14C 0.5882 0.7414 0.1398 0.123*
C15 0.81007 (14) 0.95275 (8) 0.64085 (18) 0.0516 (4)
H15A 0.7900 0.9976 0.5826 0.062* 0.742 (4)
H15B 0.7556 0.9932 0.6208 0.062* 0.258 (4)
C16 0.7452 (3) 0.95541 (14) 0.7595 (2) 0.0611 (8) 0.742 (4)
H16A 0.7684 0.9144 0.8225 0.092* 0.742 (4)
H16B 0.6688 0.9506 0.7205 0.092* 0.742 (4)
H16C 0.7590 1.0029 0.8076 0.092* 0.742 (4)
C17 0.9244 (2) 0.95782 (14) 0.7033 (4) 0.0769 (12) 0.742 (4)
H17A 0.9389 1.0051 0.7519 0.115* 0.742 (4)
H17B 0.9658 0.9553 0.6332 0.115* 0.742 (4)
H17C 0.9447 0.9165 0.7665 0.115* 0.742 (4)
C16' 0.8471 (10) 0.9434 (5) 0.7755 (9) 0.090 (3) 0.258 (4)
H16D 0.9083 0.9096 0.7912 0.136* 0.258 (4)
H16E 0.7906 0.9222 0.8149 0.136* 0.258 (4)
H16F 0.8690 0.9916 0.8174 0.136* 0.258 (4)
C17' 0.9296 (6) 0.9760 (4) 0.5818 (9) 0.062 (2) 0.258 (4)
H17D 0.9606 1.0219 0.6254 0.093* 0.258 (4)
H17E 0.9114 0.9830 0.4839 0.093* 0.258 (4)
H17F 0.9814 0.9354 0.6043 0.093* 0.258 (4)
C18 0.95008 (11) 0.68370 (7) 0.61207 (16) 0.0391 (3)
C19 0.94465 (13) 0.67609 (9) 0.74495 (17) 0.0478 (4)
H19 0.8778 0.6774 0.7702 0.057*
C20 1.03768 (15) 0.66652 (10) 0.84113 (18) 0.0566 (4)
H20 1.0349 0.6615 0.9333 0.068*
C21 1.13450 (14) 0.66421 (9) 0.8046 (2) 0.0599 (5)
H21 1.1983 0.6581 0.8713 0.072*
C22 1.13828 (13) 0.67082 (10) 0.6715 (2) 0.0610 (5)
H22 1.2050 0.6687 0.6460 0.073*
C23 1.04608 (13) 0.68058 (9) 0.57400 (18) 0.0494 (4)
H23 1.0490 0.6851 0.4818 0.059*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0692 (7) 0.0346 (4) 0.0751 (8) 0.0234 (4) 0.0446 (6) 0.0193 (4)
S1' 0.074 (2) 0.0464 (16) 0.0643 (19) 0.0307 (14) 0.0377 (16) 0.0220 (13)
O1 0.0517 (6) 0.0351 (6) 0.0629 (7) 0.0185 (5) −0.0116 (5) −0.0140 (5)
N1 0.0508 (7) 0.0319 (6) 0.0442 (7) 0.0112 (5) 0.0236 (6) 0.0083 (5)
N2 0.0453 (6) 0.0309 (6) 0.0405 (7) 0.0131 (5) 0.0223 (5) 0.0078 (5)
C1 0.0491 (8) 0.0382 (8) 0.0434 (8) 0.0027 (6) 0.0212 (7) 0.0101 (6)
C2 0.0540 (9) 0.0492 (9) 0.0481 (9) −0.0023 (7) 0.0256 (8) 0.0016 (7)
C3 0.0602 (11) 0.1049 (17) 0.0611 (12) 0.0191 (11) 0.0191 (10) 0.0378 (12)
C4 0.0924 (14) 0.0408 (10) 0.0954 (15) −0.0085 (9) 0.0518 (13) −0.0068 (10)
C5 0.0529 (8) 0.0347 (7) 0.0465 (8) 0.0136 (6) 0.0244 (7) 0.0094 (6)
C6 0.0362 (7) 0.0275 (6) 0.0344 (7) 0.0069 (5) 0.0155 (6) 0.0044 (5)
C7 0.0336 (6) 0.0339 (7) 0.0327 (7) 0.0048 (5) 0.0109 (6) 0.0033 (6)
C8 0.0388 (7) 0.0316 (7) 0.0365 (7) 0.0035 (5) 0.0069 (6) −0.0048 (6)
C9 0.0371 (7) 0.0282 (7) 0.0433 (8) 0.0073 (5) 0.0087 (6) −0.0024 (6)
C10 0.0355 (7) 0.0296 (7) 0.0420 (8) 0.0021 (5) 0.0040 (6) −0.0006 (6)
C11 0.0398 (7) 0.0260 (6) 0.0386 (7) 0.0003 (5) 0.0113 (6) 0.0001 (6)
C12 0.0435 (8) 0.0433 (8) 0.0394 (8) 0.0100 (6) 0.0025 (6) 0.0031 (7)
C13 0.0411 (9) 0.0935 (16) 0.0742 (14) −0.0062 (9) −0.0082 (9) 0.0153 (12)
C14 0.0935 (15) 0.1036 (17) 0.0394 (10) 0.0422 (13) −0.0080 (10) −0.0099 (11)
C15 0.0663 (10) 0.0259 (7) 0.0555 (10) 0.0003 (7) −0.0021 (8) −0.0046 (7)
C16 0.100 (2) 0.0433 (13) 0.0420 (13) −0.0090 (13) 0.0198 (14) −0.0127 (10)
C17 0.0589 (15) 0.0409 (14) 0.118 (3) −0.0077 (11) −0.0098 (17) −0.0191 (16)
C16' 0.162 (10) 0.055 (5) 0.056 (5) −0.022 (6) 0.029 (6) −0.020 (4)
C17' 0.061 (4) 0.047 (4) 0.075 (5) −0.018 (3) 0.006 (4) −0.019 (4)
C18 0.0390 (7) 0.0250 (6) 0.0501 (9) 0.0080 (5) 0.0025 (6) −0.0045 (6)
C19 0.0459 (8) 0.0450 (9) 0.0539 (10) 0.0050 (7) 0.0140 (7) −0.0062 (7)
C20 0.0714 (12) 0.0469 (10) 0.0464 (10) 0.0068 (8) 0.0018 (9) −0.0007 (8)
C21 0.0484 (9) 0.0441 (9) 0.0749 (13) 0.0078 (7) −0.0133 (9) −0.0070 (9)
C22 0.0383 (8) 0.0556 (11) 0.0893 (15) 0.0021 (7) 0.0145 (9) −0.0087 (10)
C23 0.0524 (9) 0.0428 (9) 0.0558 (10) 0.0033 (7) 0.0176 (8) −0.0010 (7)

Geometric parameters (Å, º)

S1—C5 1.6906 (17) C13—H13A 0.9800
S1'—C5 1.769 (3) C13—H13B 0.9800
O1—C9 1.3853 (16) C13—H13C 0.9800
O1—C18 1.3927 (17) C14—H14A 0.9800
N1—C5 1.3370 (18) C14—H14B 0.9800
N1—C1 1.4776 (18) C14—H14C 0.9800
N1—H1N 0.8800 C15—C16' 1.357 (9)
N2—C5 1.3446 (18) C15—C17 1.472 (3)
N2—C6 1.4373 (16) C15—C16 1.610 (3)
N2—H2N 0.8800 C15—C17' 1.818 (8)
C1—C3 1.519 (2) C15—H15A 1.0000
C1—C4 1.521 (2) C15—H15B 1.0000
C1—C2 1.523 (2) C16—H16A 0.9800
C2—H2A 0.9800 C16—H16B 0.9800
C2—H2B 0.9800 C16—H16C 0.9800
C2—H2C 0.9800 C17—H17A 0.9800
C3—H3A 0.9800 C17—H17B 0.9800
C3—H3B 0.9800 C17—H17C 0.9800
C3—H3C 0.9800 C16'—H16D 0.9800
C4—H4A 0.9800 C16'—H16E 0.9800
C4—H4B 0.9800 C16'—H16F 0.9800
C4—H4C 0.9800 C17'—H17D 0.9800
C6—C11 1.3935 (19) C17'—H17E 0.9800
C6—C7 1.3979 (19) C17'—H17F 0.9800
C7—C8 1.3923 (18) C18—C23 1.374 (2)
C7—C12 1.5184 (19) C18—C19 1.375 (2)
C8—C9 1.3809 (19) C19—C20 1.380 (2)
C8—H8 0.9500 C19—H19 0.9500
C9—C10 1.3802 (19) C20—C21 1.376 (3)
C10—C11 1.3963 (18) C20—H20 0.9500
C10—H10 0.9500 C21—C22 1.370 (3)
C11—C15 1.516 (2) C21—H21 0.9500
C12—C14 1.515 (2) C22—C23 1.380 (2)
C12—C13 1.518 (2) C22—H22 0.9500
C12—H12 1.0000 C23—H23 0.9500
C9—O1—C18 119.03 (11) H13A—C13—H13C 109.5
C5—N1—C1 130.69 (12) H13B—C13—H13C 109.5
C5—N1—H1N 114.7 C12—C14—H14A 109.5
C1—N1—H1N 114.7 C12—C14—H14B 109.5
C5—N2—C6 125.21 (11) H14A—C14—H14B 109.5
C5—N2—H2N 117.4 C12—C14—H14C 109.5
C6—N2—H2N 117.4 H14A—C14—H14C 109.5
N1—C1—C3 110.53 (13) H14B—C14—H14C 109.5
N1—C1—C4 110.60 (14) C16'—C15—C17 58.4 (5)
C3—C1—C4 112.18 (16) C16'—C15—C11 118.1 (4)
N1—C1—C2 104.55 (12) C17—C15—C11 115.80 (16)
C3—C1—C2 109.17 (14) C16'—C15—C16 51.2 (5)
C4—C1—C2 109.51 (14) C17—C15—C16 107.9 (2)
C1—C2—H2A 109.5 C11—C15—C16 108.72 (14)
C1—C2—H2B 109.5 C16'—C15—C17' 103.1 (5)
H2A—C2—H2B 109.5 C17—C15—C17' 44.8 (3)
C1—C2—H2C 109.5 C11—C15—C17' 99.0 (3)
H2A—C2—H2C 109.5 C16—C15—C17' 148.8 (3)
H2B—C2—H2C 109.5 C16'—C15—H15A 133.2
C1—C3—H3A 109.5 C17—C15—H15A 108.1
C1—C3—H3B 109.5 C11—C15—H15A 108.1
H3A—C3—H3B 109.5 C16—C15—H15A 108.1
C1—C3—H3C 109.5 C17'—C15—H15A 75.4
H3A—C3—H3C 109.5 C16'—C15—H15B 111.8
H3B—C3—H3C 109.5 C17—C15—H15B 129.2
C1—C4—H4A 109.5 C11—C15—H15B 111.8
C1—C4—H4B 109.5 C16—C15—H15B 71.1
H4A—C4—H4B 109.5 C17'—C15—H15B 111.8
C1—C4—H4C 109.5 H15A—C15—H15B 38.1
H4A—C4—H4C 109.5 C15—C16—H16A 109.5
H4B—C4—H4C 109.5 C15—C16—H16B 109.5
N1—C5—N2 115.83 (12) C15—C16—H16C 109.5
N1—C5—S1 124.69 (11) C15—C17—H17A 109.5
N2—C5—S1 119.21 (11) C15—C17—H17B 109.5
N1—C5—S1' 123.91 (15) C15—C17—H17C 109.5
N2—C5—S1' 116.37 (16) C15—C16'—H16D 109.5
S1—C5—S1' 24.00 (14) C15—C16'—H16E 109.5
C11—C6—C7 122.05 (11) H16D—C16'—H16E 109.5
C11—C6—N2 118.41 (12) C15—C16'—H16F 109.5
C7—C6—N2 119.52 (12) H16D—C16'—H16F 109.5
C8—C7—C6 117.97 (12) H16E—C16'—H16F 109.5
C8—C7—C12 120.90 (12) C15—C17'—H17D 109.5
C6—C7—C12 121.13 (12) C15—C17'—H17E 109.5
C9—C8—C7 120.44 (13) H17D—C17'—H17E 109.5
C9—C8—H8 119.8 C15—C17'—H17F 109.5
C7—C8—H8 119.8 H17D—C17'—H17F 109.5
C10—C9—C8 121.15 (12) H17E—C17'—H17F 109.5
C10—C9—O1 123.49 (12) C23—C18—C19 121.01 (14)
C8—C9—O1 115.35 (12) C23—C18—O1 118.12 (15)
C9—C10—C11 119.91 (13) C19—C18—O1 120.77 (14)
C9—C10—H10 120.0 C18—C19—C20 119.05 (16)
C11—C10—H10 120.0 C18—C19—H19 120.5
C6—C11—C10 118.41 (12) C20—C19—H19 120.5
C6—C11—C15 120.62 (12) C21—C20—C19 120.54 (17)
C10—C11—C15 120.97 (13) C21—C20—H20 119.7
C14—C12—C13 110.29 (18) C19—C20—H20 119.7
C14—C12—C7 111.99 (13) C22—C21—C20 119.62 (16)
C13—C12—C7 111.38 (13) C22—C21—H21 120.2
C14—C12—H12 107.7 C20—C21—H21 120.2
C13—C12—H12 107.7 C21—C22—C23 120.63 (17)
C7—C12—H12 107.7 C21—C22—H22 119.7
C12—C13—H13A 109.5 C23—C22—H22 119.7
C12—C13—H13B 109.5 C18—C23—C22 119.15 (17)
H13A—C13—H13B 109.5 C18—C23—H23 120.4
C12—C13—H13C 109.5 C22—C23—H23 120.4
C5—N1—C1—C3 −62.1 (2) N2—C6—C11—C15 −3.65 (19)
C5—N1—C1—C4 62.8 (2) C9—C10—C11—C6 0.6 (2)
C5—N1—C1—C2 −179.42 (16) C9—C10—C11—C15 −179.73 (14)
C1—N1—C5—N2 178.36 (15) C8—C7—C12—C14 −45.2 (2)
C1—N1—C5—S1 −7.7 (3) C6—C7—C12—C14 134.69 (17)
C1—N1—C5—S1' 21.4 (3) C8—C7—C12—C13 78.84 (19)
C6—N2—C5—N1 5.7 (2) C6—C7—C12—C13 −101.27 (17)
C6—N2—C5—S1 −168.61 (14) C6—C11—C15—C16' 137.5 (6)
C6—N2—C5—S1' 164.4 (2) C10—C11—C15—C16' −42.1 (6)
C5—N2—C6—C11 90.80 (18) C6—C11—C15—C17 −156.1 (2)
C5—N2—C6—C7 −90.60 (18) C10—C11—C15—C17 24.3 (3)
C11—C6—C7—C8 2.2 (2) C6—C11—C15—C16 82.22 (19)
N2—C6—C7—C8 −176.32 (12) C10—C11—C15—C16 −97.40 (19)
C11—C6—C7—C12 −177.67 (13) C6—C11—C15—C17' −112.3 (3)
N2—C6—C7—C12 3.78 (19) C10—C11—C15—C17' 68.1 (3)
C6—C7—C8—C9 0.1 (2) C9—O1—C18—C23 −108.24 (16)
C12—C7—C8—C9 179.97 (13) C9—O1—C18—C19 75.44 (18)
C7—C8—C9—C10 −2.0 (2) C23—C18—C19—C20 1.2 (2)
C7—C8—C9—O1 179.17 (13) O1—C18—C19—C20 177.37 (14)
C18—O1—C9—C10 0.5 (2) C18—C19—C20—C21 −0.3 (2)
C18—O1—C9—C8 179.27 (14) C19—C20—C21—C22 −0.6 (3)
C8—C9—C10—C11 1.6 (2) C20—C21—C22—C23 0.7 (3)
O1—C9—C10—C11 −179.64 (14) C19—C18—C23—C22 −1.0 (2)
C7—C6—C11—C10 −2.6 (2) O1—C18—C23—C22 −177.33 (14)
N2—C6—C11—C10 175.98 (12) C21—C22—C23—C18 0.1 (3)
C7—C6—C11—C15 177.79 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2N···S1i 0.88 2.53 3.3739 (15) 160

Symmetry code: (i) −x+1, −y+2, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5414).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Brandenburg, K. (2010). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Ishaaya, I., Mendelson, Z. & Horowitz, A. R. (1993). Phytoparasitica, 21, 199–204.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Zhang, X., Huang, J., Song, J., Xu, K. & Ban, Q. (2010). Chin. J. Chem. 28, 1902–1906.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814014214/sj5414sup1.cif

e-70-0o807-sup1.cif (32.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814014214/sj5414Isup2.hkl

e-70-0o807-Isup2.hkl (258.5KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814014214/sj5414Isup3.cml

CCDC reference: 1008806

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES