Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 14;70(Pt 7):o768–o769. doi: 10.1107/S1600536814013269

6-[(2-Methyl­phen­yl)sulfan­yl]-5-propyl­pyrimidine-2,4(1H,3H)-dione

Nadia G Haress a, Hazem A Ghabbour a, Ali A El-Emam a,b, C S Chidan Kumar c,, Hoong-Kun Fun a,c,*,§
PMCID: PMC4120546  PMID: 25161558

Abstract

In the title pyrimidine-2,4-dione derivative, C14H16N2O2S, the dihedral angle between the six-membered rings is 77.81 (10)°. The mol­ecule is twisted about the Cp—S (p = pyrimidine) bond, with a C—S—C—N torsion angle of −59.01 (17)°. An intramolecular C—H⋯S hydrogen bond generates an S(5) ring motif. In the crystal, bifurcated acceptor N—H⋯O and C—H⋯O hydrogen bonds generate inversion-related dimers incorporating R 2 1(9) and R 2 2(8) loops. These dimers are connected into a chain extending along the a-axis direction by a second pair of inversion-related N—H⋯O hydrogen bonds, forming another R 2 2(8) loop. The crystal structure is further stabilized by weak inter­molecular C—H⋯π inter­actions, generating a three-dimensional network.

Related literature  

For the pharmacological activity of pyrimidine-2,4-dione derivatives, see: Al-Abdullah et al. (2011, 2014); Tanaka et al. (1995); Hopkins et al. (1996); Russ et al. (2003); Al-Deeb et al. (2013); Nencka et al. (2006); El-Emam et al. (2004); El-Brollosy et al. (2009, 2011). For related pyrimidine-2,4-dione structures, see: Al-Omary et al. (2014); Wang et al. (2006). For reference bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-70-0o768-scheme1.jpg

Experimental  

Crystal data  

  • C14H16N2O2S

  • M r = 276.36

  • Monoclinic, Inline graphic

  • a = 10.3434 (8) Å

  • b = 5.3355 (3) Å

  • c = 24.4948 (18) Å

  • β = 91.171 (3)°

  • V = 1351.52 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.42 × 0.11 × 0.06 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.906, T max = 0.986

  • 32195 measured reflections

  • 4165 independent reflections

  • 2968 reflections with I > 2σ(I)

  • R int = 0.088

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.063

  • wR(F 2) = 0.134

  • S = 1.08

  • 4165 reflections

  • 182 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814013269/sj5409sup1.cif

e-70-0o768-sup1.cif (23.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814013269/sj5409Isup2.hkl

e-70-0o768-Isup2.hkl (204.1KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814013269/sj5409Isup3.cml

CCDC reference: 1007120

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of C1–C6 and C8–C11/N1/N2 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯S1 0.97 2.75 3.166 (2) 107
N2—H1N2⋯O2i 0.82 (2) 2.01 (2) 2.829 (2) 171 (2)
N1—H1N1⋯O1ii 0.83 (3) 1.98 (3) 2.805 (2) 173 (2)
C7—H7B⋯O1ii 0.96 2.58 3.289 (3) 131
C2—H2ACg2iii 0.93 2.91 3.700 (2) 144
C7—H7BCg1iv 0.96 2.85 3.632 (3) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The financial support of the Deanship of Scientific Research and the Research Center for Female Scientific and Medical Colleges, King Saud University is greatly appreciated. CSCK thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

supplementary crystallographic information

S1. Comment

Pyrimidine-2,4-diones and their related derivatives have long been known for their diverse chemotherapeutic activities (Al-Abdullah et al., 2014, Al-Deeb et al., 2013) including antiviral activity against HIV (Tanaka et al., 1995; Hopkins et al., 1996; El-Emam et al., 2004), and HSV viruses (Russ et al., 2003). In addition, potent anticancer activity was observed for several pyrimidine-2,4-diones (Nencka et al., 2006). In a continuation of our interest in the chemical and pharmacological properties of pyrimidine and uracil derivatives (Al-Abdullah et al., 2011; El-Brollosy et al., 2009), we have synthesized the title compound (I) as a potential chemotherapeutic agent.

In the title compound (Fig. 1), the two six-membered rings (C1–C6 and C8–C11/N1/N2) are essentially planar, with maximum deviations of -0.012 (2) Å at atom C5 and 0.020 (2) Å at atom C10, respectively. The molecule is bent at the S atom with C6–S1–C8–N1 torsion angle of -59.01 (17)°. The heterocycle containing the structural unit CON2H2CO forms a dihedral of 77.81 (10)° with the adjacent benzene ring. Bond lengths and angles in (I) show normal values (Allen et al., 1987) and are comparable with those in related structures (Al-Omary et al., 2014; El-Brollosy et al., 2011; Wang et al., 2006). An intramolecular C—H···S hydrogen bond generates an S(5) ring motif. In the crystal structure, bifurcated acceptor N1–H1N1···O1 and C7–H7B···O1 (Table 1) hydrogen bonds link the two adjacent molecules into centrosymmetric inversion related dimers incorparating R21(9) and R22(8) loops (Fig. 2, Bernstein et al., 1995). These dimers are connected into a chain extending along a-axis direction via a pair of N2–H1N2···O2 hydrogen bonds (Table 1) resulting in another R22(8) loop (Fig. 2, Bernstein et al., 1995). The crystal structure stability is further consolidated by weak intermolecular C–H···π interactions (Table 1) involving the centroids of the six-membered C8–C11/N1/N2 (Cg1) and C1–C6 benzene (Cg2) rings.

S2. Experimental

A mixture of 6-chloro-5-propyluracil (943 mg, 0.005 mol), o-thiocresol (621 mg, 0.005 mol) and potassium hydroxide (281 mg, 0.005 mol), in ethanol (10 ml), was heated under reflux for 3 h. The solvent was then distilled off in vaccuo and the residue was washed with cold water, dried and crystallized from ethanol to yield 940 mg (68%) of the title compound (C14H16N2O2S) as colorless needle crystals. M·P.: 210–212 °C.

1H NMR (DMSO-d6, 500.13 MHz): δ 0.84 (t, 3H, CH2CH3, J = 7.0 Hz), 1.37–1.40 (m, 2H, CH2CH3), 2.33 (s, 3H, Ar—CH3), 2.43 (t, 2H, CH2CH2CH3, J = 7.0 Hz), 6.92–7.02 (m, 3H, Ar—H), 7.26–7.28 (m, 1H, Ar—H), 10.91 (s, 1H, NH), 11.24 (s, 1H, NH). 13 C NMR (DMSO-d6, 125.76 MHz): δ 13.72 (CH2CH3), 22.06 (CH2CH3), 20.12 (Ar—CH3), 28.22 (CH2CH2CH3), 117.44 (Pyrimidine C-5), 125.90, 126.50, 129.88, 130.20, 133.18, 140.56 (Ar—C), 143.02 (Pyrimidine C-6), 150.53 (C=O), 163.23 (C=O).

S3. Refinement

The nitrogen-bound H-atoms were located in a difference Fourier map and were refined freely. Other H atoms were positioned geometrically (C=H 0.93–0.97 Å) and refined using a riding model with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating group model was used for the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Crystal packing of the title compound, showing the hydrogen bonding interactions as dashed lines. H-atoms not involved in the hydrogen bonding are omited for clarity.

Crystal data

C14H16N2O2S F(000) = 584
Mr = 276.36 Dx = 1.353 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7715 reflections
a = 10.3434 (8) Å θ = 2.6–30.3°
b = 5.3355 (3) Å µ = 0.24 mm1
c = 24.4948 (18) Å T = 293 K
β = 91.171 (3)° Plate, colourless
V = 1351.52 (16) Å3 0.42 × 0.11 × 0.06 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 4165 independent reflections
Radiation source: fine-focus sealed tube 2968 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.088
φ and ω scans θmax = 30.7°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −14→14
Tmin = 0.906, Tmax = 0.986 k = −7→7
32195 measured reflections l = −34→35

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0398P)2 + 1.8642P] where P = (Fo2 + 2Fc2)/3
4165 reflections (Δ/σ)max < 0.001
182 parameters Δρmax = 0.56 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.06364 (5) −0.09820 (10) 0.09629 (2) 0.01784 (14)
O1 0.14557 (13) 0.6290 (3) −0.02258 (6) 0.0174 (3)
O2 0.50699 (13) 0.2361 (3) 0.04241 (6) 0.0185 (3)
N1 0.12191 (17) 0.2935 (3) 0.03381 (7) 0.0144 (4)
N2 0.32504 (16) 0.4210 (4) 0.00837 (7) 0.0141 (4)
C1 0.0464 (2) 0.3038 (4) 0.16726 (9) 0.0199 (5)
H1A 0.1358 0.3149 0.1645 0.024*
C2 −0.0179 (2) 0.4673 (5) 0.20078 (9) 0.0239 (5)
H2A 0.0274 0.5909 0.2199 0.029*
C3 −0.1512 (2) 0.4459 (5) 0.20570 (10) 0.0262 (5)
H3A −0.1952 0.5532 0.2288 0.031*
C4 −0.2185 (2) 0.2647 (5) 0.17622 (10) 0.0237 (5)
H4A −0.3075 0.2514 0.1801 0.028*
C5 −0.1558 (2) 0.1012 (4) 0.14083 (9) 0.0195 (4)
C6 −0.0214 (2) 0.1221 (4) 0.13752 (8) 0.0163 (4)
C7 −0.2318 (2) −0.0789 (5) 0.10612 (10) 0.0247 (5)
H7A −0.2013 −0.2463 0.1128 0.037*
H7B −0.2214 −0.0378 0.0683 0.037*
H7C −0.3217 −0.0684 0.1150 0.037*
C8 0.17527 (19) 0.1011 (4) 0.06450 (8) 0.0139 (4)
C9 0.19324 (18) 0.4591 (4) 0.00465 (8) 0.0136 (4)
C10 0.38780 (19) 0.2403 (4) 0.03944 (8) 0.0140 (4)
C11 0.30560 (19) 0.0645 (4) 0.06833 (8) 0.0136 (4)
C12 0.3691 (2) −0.1357 (4) 0.10241 (8) 0.0154 (4)
H12A 0.4479 −0.1886 0.0849 0.018*
H12B 0.3119 −0.2795 0.1039 0.018*
C13 0.4024 (2) −0.0509 (4) 0.16085 (9) 0.0220 (5)
H13A 0.4635 0.0867 0.1597 0.026*
H13B 0.3246 0.0095 0.1780 0.026*
C14 0.4602 (3) −0.2630 (5) 0.19489 (10) 0.0304 (6)
H14A 0.4831 −0.2017 0.2306 0.046*
H14B 0.5362 −0.3257 0.1776 0.046*
H14C 0.3980 −0.3955 0.1979 0.046*
H1N2 0.367 (2) 0.530 (5) −0.0072 (10) 0.017 (6)*
H1N1 0.042 (3) 0.304 (5) 0.0290 (10) 0.024 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0144 (2) 0.0136 (3) 0.0258 (3) −0.0032 (2) 0.00659 (19) 0.0002 (2)
O1 0.0098 (6) 0.0184 (8) 0.0241 (8) −0.0012 (6) 0.0003 (6) 0.0051 (6)
O2 0.0089 (7) 0.0201 (8) 0.0264 (8) −0.0011 (6) 0.0001 (6) 0.0052 (7)
N1 0.0064 (8) 0.0165 (9) 0.0202 (9) −0.0015 (7) 0.0003 (7) 0.0019 (7)
N2 0.0070 (7) 0.0167 (9) 0.0185 (9) −0.0019 (7) 0.0016 (6) 0.0028 (7)
C1 0.0178 (10) 0.0194 (11) 0.0226 (11) −0.0012 (9) 0.0027 (9) 0.0026 (9)
C2 0.0301 (12) 0.0210 (12) 0.0207 (11) −0.0014 (10) 0.0017 (10) 0.0004 (9)
C3 0.0282 (12) 0.0257 (13) 0.0249 (12) 0.0081 (10) 0.0072 (10) 0.0019 (10)
C4 0.0175 (10) 0.0287 (13) 0.0251 (12) 0.0053 (9) 0.0058 (9) 0.0032 (10)
C5 0.0165 (10) 0.0203 (11) 0.0219 (11) −0.0011 (9) 0.0027 (8) 0.0051 (9)
C6 0.0146 (9) 0.0177 (10) 0.0166 (10) 0.0011 (8) 0.0034 (8) 0.0045 (8)
C7 0.0194 (11) 0.0250 (12) 0.0298 (12) −0.0024 (10) 0.0006 (9) 0.0016 (10)
C8 0.0131 (9) 0.0126 (9) 0.0160 (9) −0.0038 (8) 0.0015 (7) −0.0006 (8)
C9 0.0077 (8) 0.0175 (10) 0.0156 (10) −0.0031 (7) 0.0003 (7) −0.0026 (8)
C10 0.0121 (9) 0.0143 (10) 0.0157 (10) 0.0004 (8) −0.0001 (8) −0.0013 (8)
C11 0.0127 (9) 0.0131 (10) 0.0150 (9) −0.0019 (8) 0.0001 (7) −0.0015 (8)
C12 0.0120 (9) 0.0131 (10) 0.0211 (10) −0.0004 (8) 0.0010 (8) −0.0004 (8)
C13 0.0250 (11) 0.0189 (12) 0.0221 (11) 0.0005 (9) −0.0022 (9) 0.0010 (9)
C14 0.0389 (15) 0.0267 (13) 0.0253 (13) 0.0045 (11) −0.0075 (11) 0.0032 (10)

Geometric parameters (Å, º)

S1—C8 1.763 (2) C4—H4A 0.9300
S1—C6 1.792 (2) C5—C6 1.399 (3)
O1—C9 1.223 (3) C5—C7 1.496 (3)
O2—C10 1.234 (2) C7—H7A 0.9600
N1—C9 1.362 (3) C7—H7B 0.9600
N1—C8 1.381 (3) C7—H7C 0.9600
N1—H1N1 0.83 (3) C8—C11 1.363 (3)
N2—C9 1.380 (2) C10—C11 1.459 (3)
N2—C10 1.382 (3) C11—C12 1.499 (3)
N2—H1N2 0.82 (3) C12—C13 1.534 (3)
C1—C2 1.379 (3) C12—H12A 0.9700
C1—C6 1.394 (3) C12—H12B 0.9700
C1—H1A 0.9300 C13—C14 1.521 (3)
C2—C3 1.391 (3) C13—H13A 0.9700
C2—H2A 0.9300 C13—H13B 0.9700
C3—C4 1.386 (4) C14—H14A 0.9600
C3—H3A 0.9300 C14—H14B 0.9600
C4—C5 1.398 (3) C14—H14C 0.9600
C8—S1—C6 100.76 (10) C11—C8—N1 121.85 (18)
C9—N1—C8 123.55 (17) C11—C8—S1 122.60 (16)
C9—N1—H1N1 115.4 (19) N1—C8—S1 115.52 (14)
C8—N1—H1N1 120.6 (19) O1—C9—N1 123.35 (18)
C9—N2—C10 126.26 (18) O1—C9—N2 122.14 (18)
C9—N2—H1N2 112.9 (17) N1—C9—N2 114.51 (18)
C10—N2—H1N2 120.4 (17) O2—C10—N2 120.18 (19)
C2—C1—C6 120.5 (2) O2—C10—C11 123.46 (19)
C2—C1—H1A 119.7 N2—C10—C11 116.35 (17)
C6—C1—H1A 119.7 C8—C11—C10 117.37 (19)
C1—C2—C3 119.4 (2) C8—C11—C12 124.19 (18)
C1—C2—H2A 120.3 C10—C11—C12 118.36 (17)
C3—C2—H2A 120.3 C11—C12—C13 113.39 (18)
C4—C3—C2 120.0 (2) C11—C12—H12A 108.9
C4—C3—H3A 120.0 C13—C12—H12A 108.9
C2—C3—H3A 120.0 C11—C12—H12B 108.9
C3—C4—C5 121.6 (2) C13—C12—H12B 108.9
C3—C4—H4A 119.2 H12A—C12—H12B 107.7
C5—C4—H4A 119.2 C14—C13—C12 111.74 (19)
C4—C5—C6 117.4 (2) C14—C13—H13A 109.3
C4—C5—C7 120.6 (2) C12—C13—H13A 109.3
C6—C5—C7 122.0 (2) C14—C13—H13B 109.3
C1—C6—C5 121.0 (2) C12—C13—H13B 109.3
C1—C6—S1 120.23 (16) H13A—C13—H13B 107.9
C5—C6—S1 118.71 (17) C13—C14—H14A 109.5
C5—C7—H7A 109.5 C13—C14—H14B 109.5
C5—C7—H7B 109.5 H14A—C14—H14B 109.5
H7A—C7—H7B 109.5 C13—C14—H14C 109.5
C5—C7—H7C 109.5 H14A—C14—H14C 109.5
H7A—C7—H7C 109.5 H14B—C14—H14C 109.5
H7B—C7—H7C 109.5
C6—C1—C2—C3 1.5 (3) C8—N1—C9—O1 179.84 (19)
C1—C2—C3—C4 −1.3 (4) C8—N1—C9—N2 −0.4 (3)
C2—C3—C4—C5 −0.5 (4) C10—N2—C9—O1 177.7 (2)
C3—C4—C5—C6 2.0 (3) C10—N2—C9—N1 −2.1 (3)
C3—C4—C5—C7 −175.1 (2) C9—N2—C10—O2 −174.9 (2)
C2—C1—C6—C5 0.1 (3) C9—N2—C10—C11 3.9 (3)
C2—C1—C6—S1 −177.36 (17) N1—C8—C11—C10 1.2 (3)
C4—C5—C6—C1 −1.8 (3) S1—C8—C11—C10 179.05 (15)
C7—C5—C6—C1 175.2 (2) N1—C8—C11—C12 177.94 (19)
C4—C5—C6—S1 175.71 (17) S1—C8—C11—C12 −4.2 (3)
C7—C5—C6—S1 −7.3 (3) O2—C10—C11—C8 175.5 (2)
C8—S1—C6—C1 −44.05 (19) N2—C10—C11—C8 −3.3 (3)
C8—S1—C6—C5 138.44 (18) O2—C10—C11—C12 −1.5 (3)
C9—N1—C8—C11 0.8 (3) N2—C10—C11—C12 179.76 (18)
C9—N1—C8—S1 −177.26 (16) C8—C11—C12—C13 −90.1 (2)
C6—S1—C8—C11 122.99 (18) C10—C11—C12—C13 86.6 (2)
C6—S1—C8—N1 −59.01 (17) C11—C12—C13—C14 177.06 (19)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of C1–C6 and C8–C11/N1/N2 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C12—H12B···S1 0.97 2.75 3.166 (2) 107
N2—H1N2···O2i 0.82 (2) 2.01 (2) 2.829 (2) 171 (2)
N1—H1N1···O1ii 0.83 (3) 1.98 (3) 2.805 (2) 173 (2)
C7—H7B···O1ii 0.96 2.58 3.289 (3) 131
C2—H2A···Cg2iii 0.93 2.91 3.700 (2) 144
C7—H7B···Cg1iv 0.96 2.85 3.632 (3) 140

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z; (iii) −x, y+1/2, −z+1/2; (iv) −x, −y, −z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5409).

References

  1. Al-Abdullah, E. S., Al-Obaid, A. M., Al-Deeb, O. A., Habib, E. E. & El-Emam, A. A. (2011). Eur. J. Med. Chem 46, 4642–4647. [DOI] [PubMed]
  2. Al-Abdullah, E. S., Al-Turkistani, A. A., Al-Deeb, O. A., El-Brollosy, N. R., Habib, E. E. & El-Emam, A. A. (2014). Drug Res 64, 31–39. [DOI] [PubMed]
  3. Al-Deeb, O. A., Al-Turkistani, A. A., El-Brollosy, N. R., Habib, E. E. & El-Emam, A. A. (2013). Heterocycl. Commun 19, 411–419.
  4. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  5. Al-Omary, F. A. M., Ghabbour, H. A., El-Emam, A. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o179–o180. [DOI] [PMC free article] [PubMed]
  6. Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  7. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  8. El-Brollosy, N. R., Al-Deeb, O. A., El-Emam, A. A., Pedersen, E. B., La Colla, P., Collu, G., Sanna, G. & Loddo, R. (2009). Arch. Pharm 342, 663–670. [DOI] [PubMed]
  9. El-Brollosy, N. R., El-Emam, A. A., Al-Deeb, O. A. & Ng, S. W. (2011). Acta Cryst. E67, o2839. [DOI] [PMC free article] [PubMed]
  10. El-Emam, A. A., Massoud, M. A., El-Bendary, E. R. & El-Sayed, M. A. (2004). Bull. Korean Chem. Soc 25, 991–996.
  11. Hopkins, A. L., Ren, J., Esnouf, R. M., Willcox, B. E., Jones, E. Y., Ross, C., Miyasaka, T., Walker, R. T., Tanaka, H., Stammers, D. K. & Stuart, D. I. (1996). J. Med. Chem. 39, 1589–1600. [DOI] [PubMed]
  12. Nencka, R., Votruba, I., Hrebabecky, H., Tloustova, E., Horska, K., Masojidkova, M. & Holy, A. (2006). Bioorg. Med. Chem. Lett 16, 1335–1337. [DOI] [PubMed]
  13. Russ, P., Schelling, P., Scapozza, L., Folkers, G., De Clercq, E. & Marquez, V. E. (2003). J. Med. Chem 46, 5045–5054. [DOI] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Tanaka, H., Takashima, H., Ubasawa, M., Sekiya, K., Inouye, N., Baba, M., Shigeta, S., Walker, R. T., Clercq, E. D. & Miyasaka, T. (1995). J. Med. Chem 38, 2860–2865. [DOI] [PubMed]
  17. Wang, X., Lou, Q., Guo, Y., Xu, Y., Zhang, Z. & Liu, J. (2006). Org. Biomol. Chem 4, 3252–3258. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814013269/sj5409sup1.cif

e-70-0o768-sup1.cif (23.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814013269/sj5409Isup2.hkl

e-70-0o768-Isup2.hkl (204.1KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814013269/sj5409Isup3.cml

CCDC reference: 1007120

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES