Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 14;70(Pt 7):o770. doi: 10.1107/S1600536814012094

3-Bromo-N-(3,5-di-tert-butyl­phen­yl)propanamide

Anwar Abo-Amer a, Mahmoud Al-Refai a, Richard J Puddephatt b, Basem F Ali a,*
PMCID: PMC4120558  PMID: 25161559

Abstract

The title compound, C17H26BrNO, exhibits a small twist between the amide residue and the benzene ring [C—N—C—C torsion angle = 29.4 (5)°]. In the crystal, the amido NH group is involved in N—H⋯O hydrogen bonding, which connects mol­ecules into chains parallel to the c axis.

Related literature  

For the related structure of a derivative with an alkyl-N-aryl substituent, see: Palakshamurthy et al. (2014), with an alkyl-N-phenyl­sulfonyl substituent, see: Shakuntala et al. (2011) and with a chloro-N-phenyl substituent, see: Betz et al. (2011). For details of the synthesis, see: Bentiss & Lagrenée (1999); Hill et al. (2007).graphic file with name e-70-0o770-scheme1.jpg

Experimental  

Crystal data  

  • C17H26BrNO

  • M r = 340.30

  • Monoclinic, Inline graphic

  • a = 15.666 (2) Å

  • b = 11.4885 (16) Å

  • c = 9.7829 (14) Å

  • β = 97.436 (4)°

  • V = 1745.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.35 mm−1

  • T = 150 K

  • 0.40 × 0.20 × 0.11 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013) T min = 0.455, T max = 0.789

  • 21557 measured reflections

  • 4005 independent reflections

  • 2738 reflections with I > 2σ(I)

  • R int = 0.055

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.145

  • S = 1.04

  • 4005 reflections

  • 187 parameters

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.65 e Å−3

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2014); software used to prepare material for publication: local programs.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814012094/nk2223sup1.cif

e-70-0o770-sup1.cif (652.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012094/nk2223Isup2.hkl

e-70-0o770-Isup2.hkl (219.8KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814012094/nk2223Isup3.cml

CCDC reference: 1005148

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O1i 0.88 2.01 2.889 (3) 174

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors would like to thank Dr Aneta Borecki and Dr Paul Boyle (University of Western Ontario) for their help in data collection and refinement.

supplementary crystallographic information

S1. Comment

The title compound C17H25BrNO, is a brominated derivative of a secondary amide bearing a di-tert-butylbenzene ring. It exhibits a small twist between the amide residue and benzene ring [the C3—N1—C4—C5 torsion angle = 29.5 (4)°]. The N—H and C=O bonds are anti to each other (Fig. 1), as observed in many other derivatives (Shakuntala et al., 2011). In the structure, bond distances and angles are within normal range (Table 1) and comparable to reported values in amide derivatives (Palakshamurthy et al., 2014, Betz et al., 2011). The torsion angle of C3—N1—C4—C9 and C3—N1—C4—C5 are -153.2 (3)° and 29.5 (4)°, respectively. The amido NH group is involved in N—H···O [2.01 Å] hydrogen bonding, which connects molecules into chains parallel to c axis (Fig. 2).

S2. Experimental

Synthesis of (2,5-Bis(2-pyridyl)-1,3,4-oxadiazole)dimethylplatinum(II), [PtMe2(ox)]

A mixture of [Pt2Me4(µ-SMe2)2] (50 mg, 0.087 mmol)) (Hill et al., 2007) and ox (ox = 2,5-bis(2-pyridyl)-1,3,4-oxadiazole) (38 mg, 0.170Dr mmol) (Bentiss and Lagrenée, 1999) in dry ether (10 ml) was stirred for 1 h. A red precipitate resulted. The precipitate was isolated and washed with acetone (3 × 5 ml). The product was recrystallized from CH2Cl2. A yellow solid was produced and dried in vacuo.

The title compound was crystallized unintentionally from the reaction mixture of the complex (2,5-Bis(2-pyridyl)-1,3,4-oxadiazole)dimethylplatinum(II), [PtMe2(ox)] (0.05 g, 0.112 mmol) and, the commercially available N-(3,5-di-tert-butylphenyl)-3-bromopropanamide (0.052 g, 0.129 mmol) in acetone (15 ml) was stirred for 5 h at room temperature. The reaction color changed to yellow suspension. The solvent was evaporated under vacuum and the resulting solid was washed with water (2 × 10 ml) and pentane (3 × 10 ml). The isolated yellow solid is highly soluble in CH2Cl2 solvent, which was dried under high vacuum. Yield 87%. A suitable crystal for X-ray diffraction analysis was selected for data collection.

S3. Refinement

The hydrogen atoms were introduced at idealized positions and were allowed to ride on the parent atom, with C—H = 0.95–0.99 Å and N—H = 0.88 Å and Uiso(H) = 1.2–1.5Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).

Fig. 2.

Fig. 2.

Partial molecular packing, showing the chains, parallel to c axis, formed via N—H···O hydrogen bonding (multi-rendered cylinders).

Crystal data

C17H26BrNO F(000) = 712
Mr = 340.30 Dx = 1.295 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 15.666 (2) Å Cell parameters from 5619 reflections
b = 11.4885 (16) Å θ = 2.2–26.0°
c = 9.7829 (14) Å µ = 2.35 mm1
β = 97.436 (4)° T = 150 K
V = 1745.9 (4) Å3 Needle, colourless
Z = 4 0.40 × 0.20 × 0.11 mm

Data collection

Bruker APEXII CCD diffractometer 2738 reflections with I > 2σ(I)
φ and ω scans Rint = 0.055
Absorption correction: multi-scan (SADABS; Bruker, 2013) θmax = 27.6°, θmin = 2.2°
Tmin = 0.455, Tmax = 0.789 h = −20→19
21557 measured reflections k = −14→14
4005 independent reflections l = −8→12

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0743P)2 + 1.5001P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
4005 reflections Δρmax = 1.08 e Å3
187 parameters Δρmin = −0.65 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.58935 (3) 0.54272 (3) 0.85526 (5) 0.04516 (17)
N1 0.61402 (17) 0.2102 (2) 0.8672 (2) 0.0205 (6)
H1C 0.5990 0.2131 0.9508 0.025*
O1 0.57853 (15) 0.2805 (2) 0.6495 (2) 0.0292 (6)
C1 0.4854 (2) 0.4604 (3) 0.7774 (4) 0.0303 (8)
H1A 0.4344 0.4974 0.8092 0.036*
H1B 0.4790 0.4653 0.6756 0.036*
C2 0.4901 (2) 0.3353 (3) 0.8208 (3) 0.0234 (7)
H2A 0.4358 0.2957 0.7840 0.028*
H2B 0.4961 0.3308 0.9227 0.028*
C3 0.56518 (19) 0.2730 (3) 0.7699 (3) 0.0201 (6)
C4 0.68642 (19) 0.1401 (3) 0.8510 (3) 0.0201 (6)
C5 0.74057 (19) 0.1639 (3) 0.7525 (3) 0.0219 (7)
H5 0.7282 0.2270 0.6904 0.026*
C6 0.81286 (19) 0.0950 (3) 0.7452 (3) 0.0226 (7)
C7 0.8718 (2) 0.1217 (3) 0.6355 (3) 0.0267 (7)
C8 0.8922 (3) 0.2519 (4) 0.6334 (5) 0.0476 (11)
H8A 0.9299 0.2674 0.5631 0.071*
H8B 0.9211 0.2757 0.7240 0.071*
H8C 0.8386 0.2959 0.6118 0.071*
C9 0.8285 (2) 0.0018 (3) 0.8365 (3) 0.0240 (7)
H9 0.8774 −0.0460 0.8308 0.029*
C10 0.7749 (2) −0.0236 (3) 0.9359 (3) 0.0222 (7)
C11 0.7922 (2) −0.1243 (3) 1.0380 (3) 0.0263 (7)
C12 0.7155 (3) −0.2089 (4) 1.0182 (5) 0.0467 (10)
H12A 0.6632 −0.1682 1.0367 0.070*
H12B 0.7267 −0.2745 1.0820 0.070*
H12C 0.7077 −0.2378 0.9232 0.070*
C13 0.8033 (3) −0.0751 (3) 1.1850 (4) 0.0364 (9)
H13A 0.8532 −0.0231 1.1975 0.055*
H13B 0.8122 −0.1393 1.2514 0.055*
H13C 0.7515 −0.0316 1.2001 0.055*
C14 0.8740 (2) −0.1920 (3) 1.0187 (4) 0.0355 (9)
H14A 0.8691 −0.2226 0.9245 0.053*
H14B 0.8813 −0.2567 1.0844 0.053*
H14C 0.9238 −0.1400 1.0349 0.053*
C15 0.7037 (2) 0.0485 (3) 0.9422 (3) 0.0218 (6)
H15 0.6666 0.0344 1.0100 0.026*
C16 0.8254 (2) 0.0852 (4) 0.4948 (4) 0.0385 (9)
H16A 0.7720 0.1299 0.4744 0.058*
H16B 0.8119 0.0020 0.4961 0.058*
H16C 0.8626 0.1004 0.4236 0.058*
C17 0.9571 (2) 0.0552 (4) 0.6613 (4) 0.0412 (10)
H17A 0.9459 −0.0285 0.6509 0.062*
H17B 0.9849 0.0712 0.7549 0.062*
H17C 0.9949 0.0802 0.5945 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0416 (3) 0.0352 (2) 0.0631 (3) −0.00389 (17) 0.0234 (2) −0.00846 (19)
N1 0.0228 (13) 0.0298 (15) 0.0107 (12) 0.0051 (11) 0.0087 (10) −0.0011 (10)
O1 0.0302 (13) 0.0479 (15) 0.0109 (10) 0.0089 (11) 0.0083 (9) 0.0029 (10)
C1 0.0244 (17) 0.038 (2) 0.0295 (18) 0.0105 (15) 0.0071 (14) 0.0062 (15)
C2 0.0170 (15) 0.0324 (18) 0.0221 (16) 0.0020 (13) 0.0082 (12) −0.0002 (13)
C3 0.0179 (15) 0.0277 (17) 0.0157 (15) −0.0025 (12) 0.0057 (12) −0.0035 (12)
C4 0.0169 (15) 0.0278 (17) 0.0164 (14) −0.0003 (12) 0.0055 (12) −0.0042 (13)
C5 0.0202 (16) 0.0322 (17) 0.0142 (14) 0.0000 (13) 0.0059 (12) 0.0012 (13)
C6 0.0182 (15) 0.0329 (18) 0.0175 (15) −0.0009 (13) 0.0053 (12) −0.0063 (13)
C7 0.0209 (16) 0.039 (2) 0.0216 (16) 0.0031 (14) 0.0092 (13) −0.0050 (14)
C8 0.044 (3) 0.047 (3) 0.059 (3) −0.0080 (19) 0.034 (2) −0.004 (2)
C9 0.0204 (16) 0.0315 (16) 0.0205 (16) 0.0034 (13) 0.0040 (13) −0.0070 (14)
C10 0.0228 (16) 0.0280 (18) 0.0158 (15) −0.0019 (13) 0.0027 (12) −0.0049 (13)
C11 0.0258 (17) 0.0294 (18) 0.0236 (16) 0.0040 (14) 0.0021 (13) 0.0014 (14)
C12 0.044 (2) 0.037 (2) 0.058 (3) −0.0040 (18) 0.001 (2) 0.012 (2)
C13 0.045 (2) 0.044 (2) 0.0216 (17) 0.0137 (17) 0.0070 (16) 0.0071 (16)
C14 0.042 (2) 0.036 (2) 0.0290 (19) 0.0125 (17) 0.0032 (16) 0.0002 (16)
C15 0.0222 (16) 0.0289 (17) 0.0158 (14) −0.0024 (13) 0.0084 (12) −0.0026 (13)
C16 0.036 (2) 0.061 (3) 0.0204 (17) −0.0049 (18) 0.0109 (15) −0.0013 (17)
C17 0.028 (2) 0.064 (3) 0.035 (2) 0.0075 (18) 0.0159 (16) −0.0010 (19)

Geometric parameters (Å, º)

Br1—C1 1.951 (4) C9—C10 1.396 (5)
N1—C3 1.350 (4) C9—H9 0.9500
N1—C4 1.416 (4) C10—C15 1.397 (4)
N1—H1C 0.8800 C10—C11 1.529 (5)
O1—C3 1.226 (4) C11—C14 1.531 (5)
C1—C2 1.498 (5) C11—C13 1.534 (5)
C1—H1A 0.9900 C11—C12 1.538 (5)
C1—H1B 0.9900 C12—H12A 0.9800
C2—C3 1.515 (4) C12—H12B 0.9800
C2—H2A 0.9900 C12—H12C 0.9800
C2—H2B 0.9900 C13—H13A 0.9800
C4—C15 1.384 (4) C13—H13B 0.9800
C4—C5 1.391 (4) C13—H13C 0.9800
C5—C6 1.391 (4) C14—H14A 0.9800
C5—H5 0.9500 C14—H14B 0.9800
C6—C9 1.396 (5) C14—H14C 0.9800
C6—C7 1.534 (4) C15—H15 0.9500
C7—C8 1.530 (6) C16—H16A 0.9800
C7—C16 1.530 (5) C16—H16B 0.9800
C7—C17 1.531 (5) C16—H16C 0.9800
C8—H8A 0.9800 C17—H17A 0.9800
C8—H8B 0.9800 C17—H17B 0.9800
C8—H8C 0.9800 C17—H17C 0.9800
C3—N1—C4 127.9 (2) C9—C10—C15 117.6 (3)
C3—N1—H1C 116.1 C9—C10—C11 122.7 (3)
C4—N1—H1C 116.1 C15—C10—C11 119.7 (3)
C2—C1—Br1 110.3 (2) C10—C11—C14 112.6 (3)
C2—C1—H1A 109.6 C10—C11—C13 108.8 (3)
Br1—C1—H1A 109.6 C14—C11—C13 107.9 (3)
C2—C1—H1B 109.6 C10—C11—C12 109.0 (3)
Br1—C1—H1B 109.6 C14—C11—C12 108.4 (3)
H1A—C1—H1B 108.1 C13—C11—C12 110.0 (3)
C1—C2—C3 111.8 (3) C11—C12—H12A 109.5
C1—C2—H2A 109.2 C11—C12—H12B 109.5
C3—C2—H2A 109.2 H12A—C12—H12B 109.5
C1—C2—H2B 109.2 C11—C12—H12C 109.5
C3—C2—H2B 109.2 H12A—C12—H12C 109.5
H2A—C2—H2B 107.9 H12B—C12—H12C 109.5
O1—C3—N1 124.3 (3) C11—C13—H13A 109.5
O1—C3—C2 121.2 (3) C11—C13—H13B 109.5
N1—C3—C2 114.5 (3) H13A—C13—H13B 109.5
C15—C4—C5 120.7 (3) C11—C13—H13C 109.5
C15—C4—N1 116.9 (3) H13A—C13—H13C 109.5
C5—C4—N1 122.3 (3) H13B—C13—H13C 109.5
C4—C5—C6 119.9 (3) C11—C14—H14A 109.5
C4—C5—H5 120.1 C11—C14—H14B 109.5
C6—C5—H5 120.1 H14A—C14—H14B 109.5
C5—C6—C9 118.7 (3) C11—C14—H14C 109.5
C5—C6—C7 119.4 (3) H14A—C14—H14C 109.5
C9—C6—C7 121.9 (3) H14B—C14—H14C 109.5
C8—C7—C16 109.3 (3) C4—C15—C10 120.9 (3)
C8—C7—C17 108.2 (3) C4—C15—H15 119.6
C16—C7—C17 108.3 (3) C10—C15—H15 119.6
C8—C7—C6 110.5 (3) C7—C16—H16A 109.5
C16—C7—C6 108.4 (3) C7—C16—H16B 109.5
C17—C7—C6 112.1 (3) H16A—C16—H16B 109.5
C7—C8—H8A 109.5 C7—C16—H16C 109.5
C7—C8—H8B 109.5 H16A—C16—H16C 109.5
H8A—C8—H8B 109.5 H16B—C16—H16C 109.5
C7—C8—H8C 109.5 C7—C17—H17A 109.5
H8A—C8—H8C 109.5 C7—C17—H17B 109.5
H8B—C8—H8C 109.5 H17A—C17—H17B 109.5
C6—C9—C10 122.3 (3) C7—C17—H17C 109.5
C6—C9—H9 118.9 H17A—C17—H17C 109.5
C10—C9—H9 118.9 H17B—C17—H17C 109.5
Br1—C1—C2—C3 −61.5 (3) C9—C6—C7—C17 −13.4 (4)
C4—N1—C3—O1 −1.8 (5) C5—C6—C9—C10 −0.9 (5)
C4—N1—C3—C2 178.0 (3) C7—C6—C9—C10 −179.6 (3)
C1—C2—C3—O1 −48.6 (4) C6—C9—C10—C15 −0.2 (5)
C1—C2—C3—N1 131.6 (3) C6—C9—C10—C11 −179.0 (3)
C3—N1—C4—C15 −153.2 (3) C9—C10—C11—C14 0.3 (4)
C3—N1—C4—C5 29.4 (5) C15—C10—C11—C14 −178.5 (3)
C15—C4—C5—C6 0.0 (5) C9—C10—C11—C13 119.9 (3)
N1—C4—C5—C6 177.3 (3) C15—C10—C11—C13 −58.9 (4)
C4—C5—C6—C9 1.0 (5) C9—C10—C11—C12 −120.1 (4)
C4—C5—C6—C7 179.7 (3) C15—C10—C11—C12 61.1 (4)
C5—C6—C7—C8 47.2 (4) C5—C4—C15—C10 −1.2 (5)
C9—C6—C7—C8 −134.1 (3) N1—C4—C15—C10 −178.6 (3)
C5—C6—C7—C16 −72.6 (4) C9—C10—C15—C4 1.3 (5)
C9—C6—C7—C16 106.1 (4) C11—C10—C15—C4 −179.9 (3)
C5—C6—C7—C17 167.9 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1C···O1i 0.88 2.01 2.889 (3) 174
C5—H5···O1 0.95 2.41 2.931 (4) 115

Symmetry code: (i) x, −y+1/2, z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: NK2223).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Bentiss, F. & Lagrenée, M. (1999). J. Heterocycl. Chem. 36, 1029–1032.
  3. Betz, R., Gerber, T., Hosten, E., Siddegowda, M. S. & Yathirajan, H. S. (2011). Acta Cryst. E67, o2868. [DOI] [PMC free article] [PubMed]
  4. Bruker (2013). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. CrystalMaker Software (2014). CrystalMaker CrystalMaker Software, Bicester, Oxfordshire, England. www.crystalmaker.com
  6. Hill, G. S., Irwin, M. J., Levy, C. J., Rendina, L. M., Puddephatt, R. J., Andersen, R. A. & Mclean, L. (2007). Platinum(II) Complexes of Dimethyl Sulfide, in Inorganic Syntheses. New York: John Wiley & Sons Inc.
  7. Palakshamurthy, B. S., Suchetan, P. A., Sreenivasa, S., Lokanath, N. K. & Madhu Chakrapani Rao, T. (2014). Acta Cryst. E70, o223. [DOI] [PMC free article] [PubMed]
  8. Shakuntala, K., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o536. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814012094/nk2223sup1.cif

e-70-0o770-sup1.cif (652.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012094/nk2223Isup2.hkl

e-70-0o770-Isup2.hkl (219.8KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814012094/nk2223Isup3.cml

CCDC reference: 1005148

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES