Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 21;70(Pt 7):o801. doi: 10.1107/S1600536814013919

4-Chloro-3-ethyl­phenol

Sean H Majer a, Joseph M Tanski a,*
PMCID: PMC4120563  PMID: 25161582

Abstract

The title compound, C8H9ClO, packs with two independent mol­ecules in the asymmetric unit, without significant differences in corresponding bond lengths and angles, with the ethyl group in each oriented nearly perpendicular to the aromatic ring having ring-to-side chain torsion angles of 81.14 (18) and −81.06 (19)°. In the crystal, mol­ecules form an O—H⋯O hydrogen-bonded chain extending along the b-axis direction, through the phenol groups in which the H atoms are disordered. These chains pack together in the solid state, giving a sheet lying parallel to (001), via an offset face-to-face π-stacking inter­action characterized by a centroid–centroid distance of 3.580 (1) Å, together with a short inter­molecular Cl⋯Cl contact [3.412 (1) Å].

Keywords: crystal structure

Related literature  

For information regarding the synthesis of 4-chloro-3-ethyl­phenol, see the following patents: Awano et al. (1987) or Schroetter et al. (1977). For applications in biological systems, see: Gerbershagen et al. (2005); Low et al. (1997). For similar chlorinated phenols, see: Cox (1995, 2003); Oswald et al. (2005). For more information on π-stacking, see: Lueckheide et al. (2013) and on halogen–halogen inter­actions, see: Pedireddi et al. (1994).graphic file with name e-70-0o801-scheme1.jpg

Experimental  

Crystal data  

  • C8H9ClO

  • M r = 156.60

  • Triclinic, Inline graphic

  • a = 7.5580 (7) Å

  • b = 8.6854 (8) Å

  • c = 12.2520 (11) Å

  • α = 78.363 (1)°

  • β = 78.762 (1)°

  • γ = 80.355 (1)°

  • V = 765.72 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 125 K

  • 0.20 × 0.15 × 0.10 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.910, T max = 0.949

  • 17904 measured reflections

  • 4656 independent reflections

  • 4176 reflections with I > 2σ(I)

  • R int = 0.019

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.107

  • S = 1.13

  • 4656 reflections

  • 183 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814013919/zs2303sup1.cif

e-70-0o801-sup1.cif (23.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814013919/zs2303Isup2.hkl

e-70-0o801-Isup2.hkl (228.1KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814013919/zs2303Isup3.cml

CCDC reference: 1008296

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.81 1.97 2.708 (3) 152
O1—H1A⋯O2i 0.81 1.86 2.6642 (17) 171
O2—H2⋯O1i 0.81 1.86 2.6642 (17) 168
O2—H2A⋯O2ii 0.82 1.91 2.704 (2) 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).

supplementary crystallographic information

S1. Comment

4-Chloro-3-ethylphenol, the title compound, can be synthesized by chlorination of 3-ethylphenol by SO2Cl2 in the presence of FeCl3 in CCl4 (Awano et al., 1987) or by adding the hydroxyl group to 1-ethyl-2-nitrobenzene followed by an acidic workup and a Sandmeyer reaction with CuCl (Schroetter et al., 1977). The title compound has been found to be useful in multiple biological applications, including testing the contracture in malignant hypothermia skeletal tissue (Low et al., 1997) and in biological activity on Ca2+ deposits in muscle cells (Gerbershagen et al., 2005).

The two independent molecules of the title compound in the asymmetric unit (Fig. 1) exhibit C—Cl bond lengths of 1.7430 (15) and 1.7469 (15) Å, and C—O bond lengths of 1.3751 (18) and 1.3778 (17) Å, respectively. These are in very close agreement with analogous bond lengths in the stuctures of 4-chlorophenol (Oswald et al., 2005), 4-chloro-3-methylphenol (Cox, 2003), and 4-chloro-3,5-dimethylphenol (Cox, 1995). The ethyl group is rotated nearly perpendicular to the plane of the ring for each independent molecule, displaying very similar torsion angles of 81.14 (18)° (C4—C3—C7—C8) and -81.06 (19)° (C12—C11—C15—C16). The structure forms a one-dimensional O—H···O hydrogen-bonded chain through the phenol groups, in which the phenol protons are 50% rotationally disordered (Fig. 2). These chains run parallel to the crystallographic b-axis. Each independent molecule forms hydrogen bonds with a neighboring equivalent independent molecule, with an oxygen–oxygen distance (O1···O1i) of 2.708 (3) Å and an oxygen–oxygen distance (O2···O2ii) of 2.704 (2) Å [for symmetry codes (i) and (ii), see Table 1]. These pairwise dimers are hydrogen-bonded to one another resulting in a third unique hydrogen bond, (O1···O2i), with length 2.6642 (17) Å. A similar hydrogen-bonding motif is found in the ordered one-dimensional hydrogen bonding chain in the structure of 4-chloro-3-methylphenol (Cox, 2003), where the O···O distances are similar at 2.711 (2) and 2.714 (2) Å. Unlike 4-chloro-3-methylphenol, where the planes of the aromatic units on each side of the hydrogen-bonded chain are parallel, in the the title compound they form a herringbone (edge-to-face or T) motif.

Neighboring hydrogen-bonded chains pack together in the solid state to form a two-dimensional sheet parallel to the 0 0 1 plane via an offset face-to-face π-stacking interaction of one of the two independent molecules, whereas the other molecule does not engage in π-stacking (Fig. 3). The π-stacking is characterized by a centroid-to-centroid distance of 3.580 (1) Å, a plane-to-centroid distance of 3.410 (1) Å, and a ring offset or ring-slipage distance of 1.092 (3) Å (Lueckheide et al., 2013). Neighboring sheets are further linked by a short intermolecular chlorine–chlorine contact (Cl1···Cl2iii) of 3.412 (1) Å, which is less than the sum of the van der Waals radii of 3.50 Å for chlorine–chlorine interactions (Pedireddi et al., 1994). For symmetry code (iii): -x, -y + 1, -z.

S2. Experimental

4-Chloro-3-ethylphenol was purchased from Aldrich Chemical Company, USA, and recrystallized from hexanes.

S3. Refinement

All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on carbon were included in calculated positions and refined using a riding model with C–H = 0.95, 0.98 and 0.99 Å and Uiso(H) = 1.2, 1.5 and 1.2 × Ueq(C) of the aryl, methyl and methylene C-atoms, respectively. The positions of the disordered phenolic hydrogen atoms were found in the difference map and refined semi-freely at 50% occupancy using a distance restraint d(O–H) = 0.84 Å, and Uiso(H) = 1.2× Ueq(O).

Figures

Fig. 1.

Fig. 1.

A view of the two independent molecules of the title compound with the atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level. The disordered phenolic hydrogen atoms are represented with dashed open bonds.

Fig. 2.

Fig. 2.

A view of the one-dimensional hydrogen-bonded chain extending along b, with displacement ellipsoids shown at the 50% probability level. For symmetry codes (i) and (ii), see Table 1.

Fig. 3.

Fig. 3.

A view of the offset face-to-face π-stacking in the structure of title compound, with a solid line indicating one interaction and a dashed line indicating one of the Cl1···Cl2 interactions. For symmetry codes: (iii) -x, -y + 1, -z; (iv): -x, -y + 1, -z + 1. Displacement ellipsoids are shown at the 50% probability level.

Crystal data

C8H9ClO Z = 4
Mr = 156.60 F(000) = 328
Triclinic, P1 Dx = 1.358 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.5580 (7) Å Cell parameters from 9958 reflections
b = 8.6854 (8) Å θ = 2.7–30.5°
c = 12.2520 (11) Å µ = 0.42 mm1
α = 78.363 (1)° T = 125 K
β = 78.762 (1)° Block, colourless
γ = 80.355 (1)° 0.20 × 0.15 × 0.10 mm
V = 765.72 (12) Å3

Data collection

Bruker APEXII CCD diffractometer 4656 independent reflections
Radiation source: fine-focus sealed tube 4176 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.019
φ and ω scans θmax = 30.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −10→10
Tmin = 0.910, Tmax = 0.949 k = −12→12
17904 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107 H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.751P] where P = (Fo2 + 2Fc2)/3
4656 reflections (Δ/σ)max < 0.001
183 parameters Δρmax = 0.48 e Å3
4 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 −0.28100 (5) 0.74811 (5) 0.30473 (4) 0.02708 (10)
O1 0.36924 (19) 0.62233 (15) 0.52135 (12) 0.0328 (3)
H1 0.4258 0.5340 0.5280 0.039* 0.50
H1A 0.4024 0.7019 0.5320 0.039* 0.50
C1 0.2194 (2) 0.65320 (17) 0.46838 (13) 0.0186 (3)
C2 0.20646 (19) 0.56371 (16) 0.38898 (12) 0.0173 (3)
H2B 0.3035 0.4836 0.3702 0.021*
C3 0.05376 (19) 0.58914 (16) 0.33626 (11) 0.0157 (2)
C4 −0.08454 (19) 0.70975 (17) 0.36563 (12) 0.0171 (3)
C5 −0.0719 (2) 0.80067 (17) 0.44421 (13) 0.0192 (3)
H5A −0.1676 0.8822 0.4622 0.023*
C6 0.0802 (2) 0.77258 (17) 0.49633 (12) 0.0197 (3)
H6A 0.0894 0.8340 0.5505 0.024*
C7 0.0464 (2) 0.49276 (18) 0.24819 (13) 0.0207 (3)
H7A −0.0793 0.4686 0.2557 0.025*
H7B 0.1272 0.3910 0.2611 0.025*
C8 0.1054 (3) 0.5813 (2) 0.12819 (13) 0.0276 (3)
H8A 0.1021 0.5144 0.0733 0.041*
H8B 0.2294 0.6062 0.1207 0.041*
H8C 0.0223 0.6799 0.1140 0.041*
Cl2 0.36637 (6) 0.24774 (5) −0.04071 (3) 0.02827 (10)
O2 0.53688 (18) 0.12745 (14) 0.41968 (10) 0.0271 (3)
H2 0.5511 0.2054 0.4427 0.033* 0.50
H2A 0.5219 0.0420 0.4598 0.033* 0.50
C9 0.4935 (2) 0.15527 (17) 0.31266 (12) 0.0171 (3)
C10 0.37918 (19) 0.06378 (16) 0.28560 (12) 0.0172 (3)
H10A 0.3293 −0.0170 0.3419 0.021*
C11 0.33641 (19) 0.08887 (17) 0.17674 (12) 0.0172 (3)
C12 0.4129 (2) 0.20931 (18) 0.09713 (12) 0.0188 (3)
C13 0.5254 (2) 0.30228 (18) 0.12387 (13) 0.0204 (3)
H13A 0.5744 0.3839 0.0679 0.024*
C14 0.5662 (2) 0.27599 (18) 0.23228 (13) 0.0195 (3)
H14A 0.6426 0.3394 0.2513 0.023*
C15 0.2080 (2) −0.00900 (19) 0.15052 (14) 0.0233 (3)
H15A 0.2089 −0.1105 0.2046 0.028*
H15B 0.2514 −0.0339 0.0736 0.028*
C16 0.0132 (2) 0.0767 (2) 0.15729 (16) 0.0292 (3)
H16A −0.0649 0.0098 0.1385 0.044*
H16B 0.0116 0.1770 0.1036 0.044*
H16C −0.0320 0.0981 0.2341 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.01775 (17) 0.0333 (2) 0.0317 (2) 0.00267 (14) −0.00926 (14) −0.00914 (16)
O1 0.0381 (7) 0.0216 (5) 0.0469 (8) −0.0047 (5) −0.0307 (6) −0.0013 (5)
C1 0.0229 (7) 0.0145 (6) 0.0204 (6) −0.0042 (5) −0.0092 (5) −0.0007 (5)
C2 0.0173 (6) 0.0147 (6) 0.0199 (6) −0.0004 (5) −0.0041 (5) −0.0032 (5)
C3 0.0172 (6) 0.0154 (6) 0.0147 (6) −0.0028 (5) −0.0022 (5) −0.0027 (5)
C4 0.0152 (6) 0.0188 (6) 0.0172 (6) −0.0018 (5) −0.0030 (5) −0.0029 (5)
C5 0.0201 (6) 0.0165 (6) 0.0199 (6) −0.0011 (5) −0.0007 (5) −0.0042 (5)
C6 0.0262 (7) 0.0162 (6) 0.0180 (6) −0.0039 (5) −0.0045 (5) −0.0044 (5)
C7 0.0224 (7) 0.0223 (7) 0.0195 (6) −0.0016 (5) −0.0051 (5) −0.0084 (5)
C8 0.0329 (8) 0.0333 (8) 0.0170 (7) 0.0006 (7) −0.0055 (6) −0.0085 (6)
Cl2 0.0300 (2) 0.0399 (2) 0.01504 (16) −0.00312 (16) −0.00605 (13) −0.00440 (14)
O2 0.0433 (7) 0.0205 (5) 0.0222 (5) −0.0027 (5) −0.0190 (5) −0.0029 (4)
C9 0.0188 (6) 0.0160 (6) 0.0173 (6) 0.0007 (5) −0.0071 (5) −0.0035 (5)
C10 0.0184 (6) 0.0152 (6) 0.0180 (6) −0.0014 (5) −0.0048 (5) −0.0022 (5)
C11 0.0161 (6) 0.0174 (6) 0.0194 (6) 0.0012 (5) −0.0054 (5) −0.0063 (5)
C12 0.0182 (6) 0.0240 (7) 0.0140 (6) 0.0010 (5) −0.0042 (5) −0.0045 (5)
C13 0.0185 (6) 0.0232 (7) 0.0183 (6) −0.0040 (5) −0.0016 (5) −0.0011 (5)
C14 0.0178 (6) 0.0200 (6) 0.0220 (7) −0.0036 (5) −0.0052 (5) −0.0039 (5)
C15 0.0236 (7) 0.0223 (7) 0.0280 (8) −0.0042 (6) −0.0098 (6) −0.0075 (6)
C16 0.0220 (7) 0.0332 (9) 0.0340 (9) −0.0055 (6) −0.0099 (6) −0.0031 (7)

Geometric parameters (Å, º)

Cl1—C4 1.7430 (15) Cl2—C12 1.7469 (15)
O1—C1 1.3751 (18) O2—C9 1.3778 (17)
O1—H1 0.8098 O2—H2 0.8144
O1—H1A 0.8145 O2—H2A 0.8150
C1—C2 1.388 (2) C9—C10 1.391 (2)
C1—C6 1.391 (2) C9—C14 1.392 (2)
C2—C3 1.395 (2) C10—C11 1.399 (2)
C2—H2B 0.9500 C10—H10A 0.9500
C3—C4 1.3993 (19) C11—C12 1.397 (2)
C3—C7 1.5072 (19) C11—C15 1.508 (2)
C4—C5 1.388 (2) C12—C13 1.388 (2)
C5—C6 1.385 (2) C13—C14 1.388 (2)
C5—H5A 0.9500 C13—H13A 0.9500
C6—H6A 0.9500 C14—H14A 0.9500
C7—C8 1.535 (2) C15—C16 1.529 (2)
C7—H7A 0.9900 C15—H15A 0.9900
C7—H7B 0.9900 C15—H15B 0.9900
C8—H8A 0.9800 C16—H16A 0.9800
C8—H8B 0.9800 C16—H16B 0.9800
C8—H8C 0.9800 C16—H16C 0.9800
C1—O1—H1 119.3 C9—O2—H2 115.6
C1—O1—H1A 113.5 C9—O2—H2A 118.3
H1—O1—H1A 126.1 H2—O2—H2A 124.2
O1—C1—C2 119.94 (14) O2—C9—C10 120.42 (13)
O1—C1—C6 119.55 (14) O2—C9—C14 118.89 (13)
C2—C1—C6 120.51 (13) C10—C9—C14 120.69 (13)
C1—C2—C3 121.26 (13) C9—C10—C11 121.06 (13)
C1—C2—H2B 119.4 C9—C10—H10A 119.5
C3—C2—H2B 119.4 C11—C10—H10A 119.5
C2—C3—C4 117.27 (13) C12—C11—C10 117.20 (13)
C2—C3—C7 119.86 (13) C12—C11—C15 122.80 (13)
C4—C3—C7 122.82 (13) C10—C11—C15 119.97 (13)
C5—C4—C3 121.79 (13) C13—C12—C11 122.05 (13)
C5—C4—Cl1 117.97 (11) C13—C12—Cl2 117.98 (12)
C3—C4—Cl1 120.23 (11) C11—C12—Cl2 119.97 (11)
C6—C5—C4 120.02 (13) C14—C13—C12 120.01 (14)
C6—C5—H5A 120.0 C14—C13—H13A 120.0
C4—C5—H5A 120.0 C12—C13—H13A 120.0
C5—C6—C1 119.14 (13) C13—C14—C9 118.97 (14)
C5—C6—H6A 120.4 C13—C14—H14A 120.5
C1—C6—H6A 120.4 C9—C14—H14A 120.5
C3—C7—C8 111.60 (13) C11—C15—C16 112.21 (13)
C3—C7—H7A 109.3 C11—C15—H15A 109.2
C8—C7—H7A 109.3 C16—C15—H15A 109.2
C3—C7—H7B 109.3 C11—C15—H15B 109.2
C8—C7—H7B 109.3 C16—C15—H15B 109.2
H7A—C7—H7B 108.0 H15A—C15—H15B 107.9
C7—C8—H8A 109.5 C15—C16—H16A 109.5
C7—C8—H8B 109.5 C15—C16—H16B 109.5
H8A—C8—H8B 109.5 H16A—C16—H16B 109.5
C7—C8—H8C 109.5 C15—C16—H16C 109.5
H8A—C8—H8C 109.5 H16A—C16—H16C 109.5
H8B—C8—H8C 109.5 H16B—C16—H16C 109.5
O1—C1—C2—C3 178.12 (13) O2—C9—C10—C11 −178.90 (13)
C6—C1—C2—C3 −0.8 (2) C14—C9—C10—C11 1.0 (2)
C1—C2—C3—C4 0.8 (2) C9—C10—C11—C12 −0.1 (2)
C1—C2—C3—C7 178.38 (13) C9—C10—C11—C15 −178.34 (13)
C2—C3—C4—C5 −0.2 (2) C10—C11—C12—C13 −0.6 (2)
C7—C3—C4—C5 −177.72 (14) C15—C11—C12—C13 177.52 (14)
C2—C3—C4—Cl1 −179.38 (11) C10—C11—C12—Cl2 179.89 (11)
C7—C3—C4—Cl1 3.11 (19) C15—C11—C12—Cl2 −2.0 (2)
C3—C4—C5—C6 −0.3 (2) C11—C12—C13—C14 0.5 (2)
Cl1—C4—C5—C6 178.84 (11) Cl2—C12—C13—C14 −179.95 (12)
C4—C5—C6—C1 0.3 (2) C12—C13—C14—C9 0.3 (2)
O1—C1—C6—C5 −178.70 (14) O2—C9—C14—C13 178.84 (13)
C2—C1—C6—C5 0.2 (2) C10—C9—C14—C13 −1.1 (2)
C2—C3—C7—C8 −96.30 (16) C12—C11—C15—C16 −81.06 (19)
C4—C3—C7—C8 81.14 (18) C10—C11—C15—C16 97.03 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O1i 0.81 1.97 2.708 (3) 152
O1—H1A···O2i 0.81 1.86 2.6642 (17) 171
O2—H2···O1i 0.81 1.86 2.6642 (17) 168
O2—H2A···O2ii 0.82 1.91 2.704 (2) 166

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2303).

References

  1. Awano, Y., Nakanishi, A. & Nonaka, Y. (1987). JP Patent 62 198 631.
  2. Bruker (2007). SAINT, SADABS and APEX2 Bruxer AXS Inc., Madison, Wisconsin, USA.
  3. Cox, P. J. (1995). Acta Cryst. C51, 1361–1364.
  4. Cox, P. J. (2003). Acta Cryst. C59, o533–o536. [DOI] [PubMed]
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Gerbershagen, M. U., Fiege, M., Weisshorn, R., Kolodzie, K., Esch, J. S. & Wappler, F. (2005). Anesth. Analg. 101, 710–714. [DOI] [PubMed]
  7. Low, A. M., Sormaz, L., Kwan, C.-Y. & Daniel, E. E. (1997). Br. J. Pharmacol. 122, 504–510. [DOI] [PMC free article] [PubMed]
  8. Lueckheide, M., Rothman, N., Ko, B. & Tanski, J. M. (2013). Polyhedron, 58, 79–84.
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  10. Oswald, I. D. H., Allan, D. R., Motherwell, W. D. S. & Parsons, S. (2005). Acta Cryst. B61, 69–79. [DOI] [PubMed]
  11. Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360.
  12. Schroetter, E., Weuffen, W. & Wigert, H. (1977). DD Patent 124 296.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814013919/zs2303sup1.cif

e-70-0o801-sup1.cif (23.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814013919/zs2303Isup2.hkl

e-70-0o801-Isup2.hkl (228.1KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814013919/zs2303Isup3.cml

CCDC reference: 1008296

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES