Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 21;70(Pt 7):o804. doi: 10.1107/S1600536814014226

6-Chloro-7-methyl-4-oxo-4H-chromene-3-carbaldehyde

Yoshinobu Ishikawa a,*
PMCID: PMC4120566  PMID: 25161585

Abstract

In the title compound, C11H7ClO3, a chlorinated and methyl­ated 3-formyl­chromone derivative, the non-H atoms are essentially coplanar (r.m.s. deviation = 0.0670 Å), with the largest deviation from the least-squares plane [0.2349 (17) Å] being for the pyran carbonyl O atom. In the crystal, mol­ecules are linked through π–π stacking inter­actions along the a axis [centroid–centroid distance between the pyran rings = 3.824 (6) Å] and two stacks are connected by type I halogen–halogen inter­actions between the Cl atoms [Cl⋯Cl = 3.397 (3) Å].

Keywords: crystal structure

Related literature  

For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013); Sirimulla et al. (2013). For halogen–halogen inter­actions, see: Metrangolo & Resnati (2014); Mukherjee & Desiraju (2014).graphic file with name e-70-0o804-scheme1.jpg

Experimental  

Crystal data  

  • C11H7ClO3

  • M r = 222.63

  • Triclinic, Inline graphic

  • a = 3.824 (6) Å

  • b = 6.111 (9) Å

  • c = 19.962 (10) Å

  • α = 81.83 (7)°

  • β = 88.82 (7)°

  • γ = 87.04 (12)°

  • V = 461.1 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 100 K

  • 0.45 × 0.20 × 0.10 mm

Data collection  

  • Rigaku AFC-7R diffractometer

  • 2677 measured reflections

  • 2092 independent reflections

  • 1784 reflections with F 2 > 2σ(F 2)

  • R int = 0.076

  • 3 standard reflections every 150 reflections intensity decay: −0.3%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.094

  • S = 1.08

  • 2092 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablock(s) General, I. DOI: 10.1107/S1600536814014226/tk5320sup1.cif

e-70-0o804-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814014226/tk5320Isup2.hkl

e-70-0o804-Isup2.hkl (102.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814014226/tk5320Isup3.cml

CCDC reference: 1008807

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The University of Shizuoka is acknowledged for instrumental support.

supplementary crystallographic information

S1. Structural commentary

Halogen bonding and halogen···halogen inter­actions have recently attracted much attention in medicinal chemistry, chemical biology, supra­molecular chemistry, and crystal engineering (Auffinger et al., 2004, Metrangolo et al., 2005, Wilcken et al., 2013, Sirimulla et al., 2013, Mukherjee & Desiraju, 2014, Metrangolo & Resnati, 2014). We have recently reported the crystal structures of halogenated 3-formyl­chromone derivatives 6,8-di­chloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013) and 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014). Both halogen bonding between the formyl oxygen atom and the chlorine atom at 8-position and type I halogen···halogen inter­action between the chlorine atoms at 6-position are observed in 6,8-di­chloro-4-oxochromene-3-carbaldehyde (Fig. 3, (top). On the other hand, a van der Waals contact between the formyl oxygen atom and the chlorine atom at 6-position is found in 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Fig. 3, middle). As part of our inter­est in these types of chemical bonding, we herein report the crystal structure of a monochlorinated and methyl­ated 3-formyl­chromone derivative 6-chloro-7-methyl-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal the inductive effect of the vicinal electron-donating group on the chlorine atom at 6-position and its inter­action mode.

The mean deviation of the least-square plane for the non-hydrogen atoms is 0.0670 Å, and the largest deviation is 0.2349 (17) Å for O3 (Fig. 1).

In the crystal, the molecules are stacked with the translation-symmetry equivalenti [centroid–centroid distance between the pyran rings = 3.824 (6) Å, i: x + 1, y, z], as shown in Fig. 2. In addition, a type I halogen···halogen inter­action is observed between the chlorine atoms at 6-position [Cl1···Cl1ii = 3.397 (3) Å, C5–Cl1–Cl1ii = 148.41 (7)°, ii: –x, –y, –z], as shown in Fig. 3 (bottom). Thus, a contact between the formyl oxygen atom and the chlorine atom at 6-position is not observed in the title compound. The chemical nature of the chlorine atom at 6-position in the title compound should be similar to that of the chlorine one at 6-position in 6,8-di­chloro-4-oxochromene-3-carbaldehyde.

S2. Synthesis and crystallization

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an aceto­nitrile solution of the commercially available title compound at room temperature.

S3. Refinement

The C(sp2)-bound hydrogen atoms were placed in geometrical positions [C—H 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model. One reflection (0 0 20) was omitted because of systematic error.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A packing view of the title compound.

Fig. 3.

Fig. 3.

Sphere models of the crystal structures of 6,8-dichloro-4-oxochromene-3-carbaldehyde (top), 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (middle), and the title compound (bottom).

Crystal data

C11H7ClO3 Z = 2
Mr = 222.63 F(000) = 228.00
Triclinic, P1 Dx = 1.603 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71069 Å
a = 3.824 (6) Å Cell parameters from 25 reflections
b = 6.111 (9) Å θ = 15.1–17.5°
c = 19.962 (10) Å µ = 0.39 mm1
α = 81.83 (7)° T = 100 K
β = 88.82 (7)° Plate, colorless
γ = 87.04 (12)° 0.45 × 0.20 × 0.10 mm
V = 461.1 (10) Å3

Data collection

Rigaku AFC-7R diffractometer θmax = 27.5°
ω–2θ scans h = −4→2
2677 measured reflections k = −7→7
2092 independent reflections l = −25→25
1784 reflections with F2 > 2σ(F2) 3 standard reflections every 150 reflections
Rint = 0.076 intensity decay: −0.3%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.2265P] where P = (Fo2 + 2Fc2)/3
2092 reflections (Δ/σ)max < 0.001
137 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.44 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.17920 (11) 0.14364 (6) 0.056454 (19) 0.01599 (13)
O1 0.4150 (4) 0.24855 (18) 0.33907 (6) 0.0147 (3)
O2 −0.0788 (4) −0.30118 (19) 0.30226 (6) 0.0175 (3)
O3 0.2039 (4) −0.2523 (3) 0.49681 (6) 0.0257 (3)
C1 0.3352 (5) 0.0873 (3) 0.38908 (8) 0.0149 (4)
C2 0.1817 (5) −0.1014 (3) 0.38028 (8) 0.0143 (4)
C3 0.0832 (5) −0.1417 (3) 0.31299 (8) 0.0125 (3)
C4 0.1395 (4) 0.0114 (3) 0.19037 (8) 0.0124 (3)
C5 0.2401 (4) 0.1770 (3) 0.14057 (8) 0.0125 (3)
C6 0.3901 (4) 0.3707 (3) 0.15567 (8) 0.0123 (3)
C7 0.4419 (4) 0.3892 (3) 0.22300 (8) 0.0131 (3)
C8 0.1912 (4) 0.0316 (3) 0.25829 (8) 0.0117 (3)
C9 0.3461 (4) 0.2198 (3) 0.27341 (8) 0.0122 (3)
C10 0.4919 (5) 0.5510 (3) 0.10037 (9) 0.0158 (4)
C11 0.1133 (5) −0.2676 (3) 0.43982 (9) 0.0185 (4)
H1 0.3904 0.1068 0.4340 0.0179*
H2 0.0357 −0.1156 0.1786 0.0149*
H3 0.5426 0.5171 0.2349 0.0157*
H4A 0.6025 0.6673 0.1203 0.0190*
H5B 0.2824 0.6139 0.0758 0.0190*
H6C 0.6571 0.4893 0.0690 0.0190*
H7 −0.0088 −0.3940 0.4331 0.0222*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0226 (3) 0.0153 (2) 0.0106 (2) −0.00165 (14) −0.00239 (13) −0.00318 (13)
O1 0.0210 (6) 0.0146 (6) 0.0093 (6) −0.0054 (5) −0.0015 (5) −0.0026 (4)
O2 0.0222 (7) 0.0151 (6) 0.0160 (6) −0.0074 (5) −0.0018 (5) −0.0024 (5)
O3 0.0382 (8) 0.0262 (7) 0.0129 (7) −0.0108 (6) −0.0028 (6) 0.0009 (5)
C1 0.0178 (8) 0.0169 (8) 0.0102 (8) −0.0016 (6) −0.0000 (6) −0.0019 (6)
C2 0.0161 (8) 0.0148 (8) 0.0121 (8) −0.0014 (6) 0.0000 (6) −0.0018 (6)
C3 0.0119 (7) 0.0129 (7) 0.0130 (8) −0.0000 (6) −0.0002 (6) −0.0030 (6)
C4 0.0123 (8) 0.0113 (7) 0.0142 (8) −0.0005 (6) −0.0012 (6) −0.0039 (6)
C5 0.0125 (8) 0.0140 (7) 0.0116 (7) 0.0012 (6) −0.0012 (6) −0.0037 (6)
C6 0.0101 (7) 0.0113 (7) 0.0151 (8) 0.0011 (6) −0.0000 (6) −0.0015 (6)
C7 0.0128 (8) 0.0108 (7) 0.0160 (8) −0.0011 (6) −0.0004 (6) −0.0032 (6)
C8 0.0119 (8) 0.0110 (7) 0.0125 (8) −0.0000 (6) −0.0016 (6) −0.0026 (6)
C9 0.0124 (8) 0.0136 (7) 0.0114 (8) 0.0001 (6) −0.0017 (6) −0.0044 (6)
C10 0.0198 (8) 0.0120 (7) 0.0152 (8) −0.0021 (6) 0.0010 (6) 0.0001 (6)
C11 0.0237 (9) 0.0177 (8) 0.0143 (8) −0.0054 (7) −0.0004 (7) −0.0015 (6)

Geometric parameters (Å, º)

Cl1—C5 1.7418 (19) C6—C7 1.384 (3)
O1—C1 1.341 (3) C6—C10 1.505 (3)
O1—C9 1.379 (3) C7—C9 1.395 (3)
O2—C3 1.228 (3) C8—C9 1.394 (3)
O3—C11 1.214 (3) C1—H1 0.950
C1—C2 1.355 (3) C4—H2 0.950
C2—C3 1.460 (3) C7—H3 0.950
C2—C11 1.478 (3) C10—H4A 0.980
C3—C8 1.477 (3) C10—H5B 0.980
C4—C5 1.378 (3) C10—H6C 0.980
C4—C8 1.398 (3) C11—H7 0.950
C5—C6 1.414 (3)
Cl1···C10 3.061 (5) O3···H7iv 3.3646
O1···C3 2.874 (5) O3···H7viii 2.5400
O2···C1 3.580 (5) C1···H7ii 3.5865
O2···C4 2.865 (4) C2···H1vii 3.4323
O2···C11 2.895 (3) C2···H7iv 3.5942
O3···C1 2.825 (4) C3···H3v 3.5438
C1···C7 3.584 (4) C3···H3vi 3.2093
C1···C8 2.751 (3) C4···H2iv 3.4855
C2···C9 2.772 (4) C4···H3vi 3.3323
C4···C7 2.797 (5) C4···H4Av 3.4637
C5···C9 2.742 (3) C4···H4Avi 3.1405
C6···C8 2.821 (4) C4···H5Bvi 3.5800
Cl1···Cl1i 3.397 (3) C5···H2iv 3.4899
O1···O2ii 3.259 (5) C5···H4Avi 3.4169
O1···O2iii 3.432 (5) C5···H6Cvii 3.0939
O1···C2iv 3.578 (6) C6···H2ii 3.4420
O1···C3iv 3.487 (6) C6···H4Avii 3.4668
O2···O1v 3.432 (5) C6···H6Cvii 3.3186
O2···O1vi 3.259 (5) C7···H2ii 3.3414
O2···C2vii 3.452 (5) C7···H3vii 3.4983
O2···C3vii 3.313 (6) C8···H3vi 3.4446
O2···C7v 3.282 (4) C9···H3vii 3.5296
O2···C7vi 3.222 (5) C10···H2ii 3.1715
O2···C8vii 3.422 (6) C10···H2iii 3.5202
O2···C9vi 3.389 (5) C10···H4Avii 3.4653
O3···O3viii 3.462 (5) C10···H5Biv 3.0874
O3···O3ix 3.400 (5) C10···H6Cvii 3.3170
O3···C1ix 3.271 (4) C10···H6Cxii 3.4850
O3···C1x 3.212 (4) C11···H1vii 3.4892
O3···C11viii 3.306 (5) C11···H1ix 3.3664
C1···O3ix 3.271 (4) C11···H1x 3.4654
C1···O3x 3.212 (4) C11···H7iv 3.4101
C1···C2iv 3.390 (6) C11···H7viii 3.0703
C1···C3iv 3.530 (5) H1···O3ix 2.8065
C2···O1vii 3.578 (6) H1···O3x 2.3848
C2···O2iv 3.452 (5) H1···C2iv 3.4323
C2···C1vii 3.390 (6) H1···C11iv 3.4892
C3···O1vii 3.487 (6) H1···C11ix 3.3664
C3···O2iv 3.313 (6) H1···C11x 3.4654
C3···C1vii 3.530 (5) H1···H1x 2.8906
C3···C9vii 3.522 (6) H1···H7ii 3.3381
C4···C6vii 3.537 (6) H2···C4vii 3.4855
C4···C7vii 3.548 (6) H2···C5vii 3.4899
C5···C6vii 3.424 (6) H2···C6vi 3.4420
C5···C10vii 3.599 (6) H2···C7vi 3.3414
C6···C4iv 3.537 (6) H2···C10v 3.5202
C6···C5iv 3.424 (6) H2···C10vi 3.1715
C7···O2ii 3.222 (5) H2···H3v 3.0807
C7···O2iii 3.282 (4) H2···H3vi 2.9969
C7···C4iv 3.548 (6) H2···H4Av 2.5702
C7···C8iv 3.533 (6) H2···H4Avi 2.8020
C8···O2iv 3.422 (6) H2···H5Bvi 2.9247
C8···C7vii 3.533 (6) H3···O2ii 2.9512
C8···C9vii 3.396 (6) H3···O2iii 2.4107
C9···O2ii 3.389 (5) H3···C3ii 3.2093
C9···C3iv 3.522 (6) H3···C3iii 3.5438
C9···C8iv 3.396 (6) H3···C4ii 3.3323
C10···C5iv 3.599 (6) H3···C7iv 3.4983
C11···O3viii 3.306 (5) H3···C8ii 3.4446
C11···C11viii 3.581 (5) H3···C9iv 3.5296
Cl1···H2 2.7736 H3···H2ii 2.9969
Cl1···H5B 3.0008 H3···H2iii 3.0807
Cl1···H6C 2.9039 H4A···Cl1ii 3.3558
O1···H3 2.5156 H4A···C4ii 3.1405
O2···H2 2.6042 H4A···C4iii 3.4637
O2···H7 2.6084 H4A···C5ii 3.4169
O3···H1 2.4980 H4A···C6iv 3.4668
C1···H7 3.2820 H4A···C10iv 3.4653
C3···H1 3.2957 H4A···H2ii 2.8020
C3···H2 2.6739 H4A···H2iii 2.5702
C3···H7 2.6867 H4A···H5Biv 2.7486
C5···H3 3.2635 H5B···Cl1ii 3.2097
C5···H4A 3.3351 H5B···Cl1xi 3.3310
C5···H5B 2.8070 H5B···Cl1xii 3.5195
C5···H6C 2.7698 H5B···C4ii 3.5800
C6···H2 3.2984 H5B···C10vii 3.0874
C7···H4A 2.5561 H5B···H2ii 2.9247
C7···H5B 3.1190 H5B···H4Avii 2.7486
C7···H6C 3.1491 H5B···H6Cvii 2.5591
C8···H3 3.2892 H5B···H6Cxii 3.0471
C9···H1 3.1874 H6C···Cl1iv 2.8645
C9···H2 3.2616 H6C···Cl1xii 3.1901
C10···H3 2.6736 H6C···C5iv 3.0939
C11···H1 2.5574 H6C···C6iv 3.3186
H1···H7 3.4925 H6C···C10iv 3.3170
H3···H4A 2.3514 H6C···C10xii 3.4850
H3···H5B 3.3096 H6C···H5Biv 2.5591
H3···H6C 3.3584 H6C···H5Bxii 3.0471
Cl1···H4Avi 3.3558 H6C···H6Cxii 3.0105
Cl1···H5Bvi 3.2097 H7···O1vi 3.4049
Cl1···H5Bxi 3.3310 H7···O3vii 3.3646
Cl1···H5Bxii 3.5195 H7···O3viii 2.5400
Cl1···H6Cvii 2.8645 H7···C1vi 3.5865
Cl1···H6Cxii 3.1901 H7···C2vii 3.5942
O1···H7ii 3.4049 H7···C11vii 3.4101
O2···H3v 2.4107 H7···C11viii 3.0703
O2···H3vi 2.9512 H7···H1vi 3.3381
O3···H1ix 2.8065 H7···H7viii 2.7996
O3···H1x 2.3848
C1—O1—C9 118.32 (15) O1—C9—C7 116.26 (16)
O1—C1—C2 124.81 (17) O1—C9—C8 121.84 (15)
C1—C2—C3 120.85 (15) C7—C9—C8 121.90 (17)
C1—C2—C11 119.27 (17) O3—C11—C2 123.93 (18)
C3—C2—C11 119.87 (17) O1—C1—H1 117.595
O2—C3—C2 123.93 (15) C2—C1—H1 117.592
O2—C3—C8 122.62 (17) C5—C4—H2 120.213
C2—C3—C8 113.45 (16) C8—C4—H2 120.226
C5—C4—C8 119.56 (17) C6—C7—H3 120.052
Cl1—C5—C4 118.24 (15) C9—C7—H3 120.055
Cl1—C5—C6 119.54 (13) C6—C10—H4A 109.463
C4—C5—C6 122.22 (17) C6—C10—H5B 109.471
C5—C6—C7 117.93 (15) C6—C10—H6C 109.471
C5—C6—C10 121.19 (17) H4A—C10—H5B 109.473
C7—C6—C10 120.87 (16) H4A—C10—H6C 109.475
C6—C7—C9 119.89 (17) H5B—C10—H6C 109.474
C3—C8—C4 121.00 (16) O3—C11—H7 118.044
C3—C8—C9 120.54 (16) C2—C11—H7 118.029
C4—C8—C9 118.46 (15)
C1—O1—C9—C7 −178.36 (12) H2—C4—C5—C6 178.9
C1—O1—C9—C8 1.3 (2) H2—C4—C8—C3 −0.6
C9—O1—C1—C2 −1.9 (3) H2—C4—C8—C9 179.6
C9—O1—C1—H1 178.1 Cl1—C5—C6—C7 −178.56 (10)
O1—C1—C2—C3 −1.1 (3) Cl1—C5—C6—C10 1.2 (2)
O1—C1—C2—C11 179.01 (13) C4—C5—C6—C7 1.3 (3)
H1—C1—C2—C3 178.9 C4—C5—C6—C10 −178.89 (13)
H1—C1—C2—C11 −1.0 C5—C6—C7—C9 −0.1 (3)
C1—C2—C3—O2 −174.55 (15) C5—C6—C7—H3 179.9
C1—C2—C3—C8 4.3 (2) C5—C6—C10—H4A −176.9
C1—C2—C11—O3 −4.2 (3) C5—C6—C10—H5B 63.1
C1—C2—C11—H7 175.8 C5—C6—C10—H6C −56.9
C3—C2—C11—O3 175.88 (15) C7—C6—C10—H4A 2.8
C3—C2—C11—H7 −4.1 C7—C6—C10—H5B −117.1
C11—C2—C3—O2 5.3 (3) C7—C6—C10—H6C 122.8
C11—C2—C3—C8 −175.85 (13) C10—C6—C7—C9 −179.90 (13)
O2—C3—C8—C4 −5.7 (3) C10—C6—C7—H3 0.1
O2—C3—C8—C9 174.08 (14) C6—C7—C9—O1 178.34 (13)
C2—C3—C8—C4 175.51 (13) C6—C7—C9—C8 −1.3 (3)
C2—C3—C8—C9 −4.8 (2) H3—C7—C9—O1 −1.7
C5—C4—C8—C3 179.37 (13) H3—C7—C9—C8 178.7
C5—C4—C8—C9 −0.4 (3) C3—C8—C9—O1 2.2 (3)
C8—C4—C5—Cl1 178.80 (12) C3—C8—C9—C7 −178.17 (13)
C8—C4—C5—C6 −1.1 (3) C4—C8—C9—O1 −178.08 (13)
H2—C4—C5—Cl1 −1.2 C4—C8—C9—C7 1.6 (3)

Symmetry codes: (i) −x, −y, −z; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x−1, y−1, z; (vi) x, y−1, z; (vii) x−1, y, z; (viii) −x, −y−1, −z+1; (ix) −x, −y, −z+1; (x) −x+1, −y, −z+1; (xi) −x, −y+1, −z; (xii) −x+1, −y+1, −z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5320).

References

  1. Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794. [DOI] [PMC free article] [PubMed]
  2. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
  3. Ishikawa, Y. (2014). Acta Cryst. E70, o514. [DOI] [PMC free article] [PubMed]
  4. Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416. [DOI] [PMC free article] [PubMed]
  5. Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395. [DOI] [PubMed]
  6. Metrangolo, P. & Resnati, G. (2014). IUCrJ, 1, 5–7. [DOI] [PMC free article] [PubMed]
  7. Mukherjee, A. & Desiraju, G. R. (2014). IUCrJ, 1, 49–60. [DOI] [PMC free article] [PubMed]
  8. Rigaku (1999). WinAFC Diffractometer Control Software Rigaku Corporation, Tokyo, Japan.
  9. Rigaku (2010). CrystalStructure Rigaku Corporation, Tokyo, Japan.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791. [DOI] [PubMed]
  12. Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) General, I. DOI: 10.1107/S1600536814014226/tk5320sup1.cif

e-70-0o804-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814014226/tk5320Isup2.hkl

e-70-0o804-Isup2.hkl (102.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814014226/tk5320Isup3.cml

CCDC reference: 1008807

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES