Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 7;70(Pt 7):i31. doi: 10.1107/S1600536814012343

Tetra­ammineplatinum(II) dichloride ammonia tetra­solvate

Tobias Grassl a, Nikolaus Korber a,*
PMCID: PMC4120569  PMID: 25161504

Abstract

The title compound, [Pt(NH3)4]Cl2·4NH3, was crystallized in liquid ammonia from the salt PtCl2. The platinum cation is coordinated by four ammonia mol­ecules, forming a square-planar complex. The chloride anions are surrounded by nine ammonia mol­ecules, either bound within the platinum complex or solvent mol­ecules. The solvent ammonia mol­ecules are packed in such a way that an extended network of N—H⋯N and N—H⋯Cl hydrogen bonds is formed. The structure is isotypic with [Pd(NH3)4]Cl2·4NH3 [Grassl & Korber (2014). Acta Cryst. E70, i32].

Related literature  

For weak inter­molecular inter­actions such as hydrogen bonds and their application in crystal engineering, see: Desiraju (2002, 2007); Steiner (2002). For the structure of Magnus salt and tetra­amminplatinous salts, see: Atoji et al. (1957); Cox (1932); Smolentsev et al. (2010). The Pd analogue is described by Grassl & Korber (2014).

Experimental  

Crystal data  

  • [Pt(NH3)4]Cl2·4NH3

  • M r = 402.25

  • Monoclinic, Inline graphic

  • a = 7.6641 (2) Å

  • b = 10.1601 (3) Å

  • c = 8.7797 (2) Å

  • β = 100.975 (3)°

  • V = 671.15 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 10.83 mm−1

  • T = 123 K

  • 0.2 × 0.1 × 0.1 mm

Data collection  

  • Agilent Xcalibur (Ruby, Gemini ultra) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2012), using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)] T min = 0.162, T max = 0.462

  • 14167 measured reflections

  • 1368 independent reflections

  • 1276 reflections with I > 2σ(I)

  • R int = 0.022

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.009

  • wR(F 2) = 0.021

  • S = 1.12

  • 1368 reflections

  • 100 parameters

  • All H-atom parameters refined

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: OLEX2.solve (Bourhis et al., 2014); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814012343/pk2522sup1.cif

e-70-00i31-sup1.cif (16.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012343/pk2522Isup2.hkl

e-70-00i31-Isup2.hkl (67.5KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814012343/pk2522Isup3.mol

CCDC reference: 1005538

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1 0.85 (2) 2.62 (2) 3.4437 (16) 162.8 (19)
N2—H2B⋯Cl1i 0.85 (2) 2.52 (2) 3.3594 (17) 169.0 (19)
N1—H1A⋯Cl1i 0.91 (2) 2.42 (2) 3.3155 (17) 170.2 (17)
N4—H4A⋯Cl1ii 0.89 (3) 2.81 (3) 3.6330 (19) 154 (2)
N1—H1B⋯Cl1ii 0.90 (3) 2.45 (3) 3.3440 (17) 173 (2)
N2—H2C⋯N4iii 0.86 (2) 2.16 (2) 3.020 (2) 178 (2)
N3—H3A⋯Cl1 0.84 (3) 2.75 (3) 3.583 (2) 171 (2)
N4—H4B⋯Cl1 0.93 (4) 2.64 (4) 3.544 (2) 166 (3)
N4—H4C⋯Cl1iv 0.82 (5) 2.82 (5) 3.608 (2) 163 (4)
N1—H1C⋯N3v 0.89 (3) 2.08 (3) 2.970 (2) 178.1 (19)
N3—H3B⋯Cl1vi 0.83 (3) 2.80 (3) 3.616 (2) 168 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

supplementary crystallographic information

S1. Comment

The crystal structure of the title compound was determined in the course of investigations regarding the reactivity of carbohydrates towards metal cations in liquid ammonia.

In the crystal structure the platinum cation forms a homoleptic ammine complex with a square-planar coordination geometry. The Pt—N bond lengths are 2.0471 (16) Å and 2.0519 (15) Å, respectively. This is in good accordance with the bond lengths given by Smolentsev et al. (2010). The angles N—Pt—N are 89.24 (6)° and 90.76 (6)°, and within the complex, ammonia ligands opposite to each other have staggered hydrogen atom positions (Fig 1).

The chloride anion shows nine direct contacts to hydrogen atoms of ammonia molecules either bound in the complex or to solvate molecules, forming a network of hydrogen bonds (Fig. 2 and Fig. 3). The N—H···Cl bond angles range between 154 (2)° and 173 (2)° whereas N—H···Cl bond lengths have values between 2.42 (2) Å and 2.82 (5) Å. The two occurring N—H···N bridges are nearly linear, with bond angles of 178 (2)° and 178.1 (19)° and bond lengths considerably less than the sum of the van der Waals radii of nitrogen and hydrogen [2.16 (2) Å and 2.08 (3) Å]. This gives strong evidence that the arrangement of the overall structure is significantly driven by the energy contribution of N—H···N and N—H···Cl hydrogen bonds.

S2. Experimental

0.25 g (1.0 mmol) PtCl2 and 0.21 g (1.00 mmol) N-acetylglucosamine were placed under argon atmosphere in a reaction vessel and 40 ml of dry liquid ammonia were condensed. The mixture was stored at 237 K for one week to ensure that all substances were completely dissolved. The flask was then stored at 161 K for five months. After that period, clear colorless crystals of the title compound were found at the bottom of the flask.

S3. Refinement

The crystal structure does not show any features where special refinement methods have to be applied. All hydrogen atoms could be located in difference map and both bond angle/bond length and isotropic displacement parameters were refined.

Figures

Fig. 1.

Fig. 1.

: Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) 2 - x, 1 - y, 1 - z.

Fig. 2.

Fig. 2.

: The chloride anion is shown with its surrounding molecules. The predominant bond type is hydrogen bonding. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 3.

Fig. 3.

: Extended network of hydrogen bonds in the crystal structure. The solvent ammonia molecules are oriented to optimize the hydrogen bond geometry. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

[Pt(NH3)4]Cl2·4NH3 F(000) = 384
Mr = 402.25 Dx = 1.991 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 7.6641 (2) Å Cell parameters from 9522 reflections
b = 10.1601 (3) Å θ = 3.1–30.6°
c = 8.7797 (2) Å µ = 10.83 mm1
β = 100.975 (3)° T = 123 K
V = 671.15 (3) Å3 Block, clear light colourless
Z = 2 0.2 × 0.1 × 0.1 mm

Data collection

Agilent Xcalibur (Ruby, Gemini ultra) diffractometer 1368 independent reflections
Radiation source: fine-focus sealed tube 1276 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
phi and ω scans θmax = 26.4°, θmin = 3.1°
Absorption correction: analytical [CrysAlis PRO (Agilent, 2012), using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)] h = −9→9
Tmin = 0.162, Tmax = 0.462 k = −12→12
14167 measured reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: iterative
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.009 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.021 All H-atom parameters refined
S = 1.12 w = 1/[σ2(Fo2) + (0.0076P)2 + 0.3355P] where P = (Fo2 + 2Fc2)/3
1368 reflections (Δ/σ)max = 0.001
100 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark & Reid, 1995)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pt1 1.0000 0.5000 0.5000 0.01239 (4)
Cl1 0.40589 (5) 0.33782 (4) 0.26730 (5) 0.01904 (8)
N1 0.9576 (2) 0.48294 (16) 0.72243 (19) 0.0173 (3)
N2 0.8502 (2) 0.33479 (16) 0.43520 (18) 0.0178 (3)
N3 0.7320 (2) 0.4290 (2) 0.0434 (2) 0.0277 (4)
N4 0.5205 (3) 0.6754 (2) 0.3118 (2) 0.0328 (4)
H2A 0.740 (3) 0.352 (2) 0.405 (2) 0.030 (6)*
H2B 0.857 (3) 0.282 (2) 0.511 (3) 0.028 (6)*
H1A 0.941 (3) 0.398 (2) 0.747 (2) 0.024 (5)*
H4A 0.577 (4) 0.675 (3) 0.410 (4) 0.073 (10)*
H1B 0.858 (3) 0.526 (2) 0.732 (3) 0.034 (6)*
H2C 0.887 (3) 0.291 (2) 0.364 (3) 0.028 (6)*
H3A 0.648 (3) 0.406 (3) 0.086 (3) 0.043 (7)*
H4B 0.509 (4) 0.586 (4) 0.293 (4) 0.078 (10)*
H4C 0.428 (6) 0.714 (5) 0.315 (5) 0.140 (19)*
H1C 1.050 (4) 0.5111 (19) 0.792 (3) 0.029 (6)*
H3B 0.688 (4) 0.486 (2) −0.021 (4) 0.049 (9)*
H3C 0.752 (3) 0.360 (3) −0.014 (3) 0.058 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pt1 0.01155 (5) 0.01255 (5) 0.01316 (6) 0.00056 (3) 0.00256 (3) 0.00081 (3)
Cl1 0.01979 (18) 0.01656 (19) 0.0203 (2) 0.00148 (17) 0.00270 (15) −0.00201 (17)
N1 0.0185 (8) 0.0176 (8) 0.0165 (8) 0.0000 (6) 0.0049 (7) 0.0015 (6)
N2 0.0181 (8) 0.0173 (8) 0.0177 (8) −0.0025 (6) 0.0026 (6) 0.0012 (7)
N3 0.0256 (9) 0.0332 (10) 0.0227 (9) 0.0001 (8) 0.0003 (7) 0.0057 (8)
N4 0.0483 (11) 0.0238 (10) 0.0252 (10) −0.0071 (9) 0.0041 (8) 0.0005 (8)

Geometric parameters (Å, º)

Pt1—N1 2.0471 (16) N2—H2B 0.85 (2)
Pt1—N1i 2.0471 (16) N2—H2C 0.86 (2)
Pt1—N2i 2.0519 (15) N3—H3A 0.84 (3)
Pt1—N2 2.0519 (15) N3—H3B 0.83 (3)
N1—H1A 0.91 (2) N3—H3C 0.90 (3)
N1—H1B 0.90 (3) N4—H4A 0.89 (3)
N1—H1C 0.89 (3) N4—H4B 0.93 (4)
N2—H2A 0.85 (2) N4—H4C 0.82 (5)
N1i—Pt1—N1 179.999 (15) Pt1—N2—H2A 112.9 (14)
N1—Pt1—N2i 89.24 (6) Pt1—N2—H2B 110.5 (14)
N1i—Pt1—N2i 90.76 (6) Pt1—N2—H2C 112.5 (14)
N1i—Pt1—N2 89.24 (6) H2A—N2—H2B 106.4 (19)
N1—Pt1—N2 90.76 (6) H2A—N2—H2C 108.9 (19)
N2—Pt1—N2i 180.00 (7) H2B—N2—H2C 105 (2)
Pt1—N1—H1A 111.1 (13) H3A—N3—H3B 105 (3)
Pt1—N1—H1B 109.9 (16) H3A—N3—H3C 105 (2)
Pt1—N1—H1C 111.9 (16) H3B—N3—H3C 105 (2)
H1A—N1—H1B 106.9 (19) H4A—N4—H4B 100 (3)
H1A—N1—H1C 105.9 (18) H4A—N4—H4C 103 (3)
H1B—N1—H1C 111 (2) H4B—N4—H4C 115 (4)

Symmetry code: (i) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2A···Cl1 0.85 (2) 2.62 (2) 3.4437 (16) 162.8 (19)
N2—H2B···Cl1ii 0.85 (2) 2.52 (2) 3.3594 (17) 169.0 (19)
N1—H1A···Cl1ii 0.91 (2) 2.42 (2) 3.3155 (17) 170.2 (17)
N4—H4A···Cl1iii 0.89 (3) 2.81 (3) 3.6330 (19) 154 (2)
N1—H1B···Cl1iii 0.90 (3) 2.45 (3) 3.3440 (17) 173 (2)
N2—H2C···N4iv 0.86 (2) 2.16 (2) 3.020 (2) 178 (2)
N3—H3A···Cl1 0.84 (3) 2.75 (3) 3.583 (2) 171 (2)
N4—H4B···Cl1 0.93 (4) 2.64 (4) 3.544 (2) 166 (3)
N4—H4C···Cl1v 0.82 (5) 2.82 (5) 3.608 (2) 163 (4)
N1—H1C···N3i 0.89 (3) 2.08 (3) 2.970 (2) 178.1 (19)
N3—H3B···Cl1vi 0.83 (3) 2.80 (3) 3.616 (2) 168 (3)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x+1/2, −y+1/2, z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x+3/2, y−1/2, −z+1/2; (v) −x+1/2, y+1/2, −z+1/2; (vi) −x+1, −y+1, −z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: PK2522).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Atoji, M., Richardson, J. W. & Rundle, R. E. (1957). J. Am. Chem. Soc. 79, 3017–3020.
  3. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2014). In preparation.
  4. Brandenburg, K. & Putz, H. (2012). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  6. Cox, E. G. (1932). J. Chem. Soc. 6, 1912–1920.
  7. Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573. [DOI] [PubMed]
  8. Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342–8356. [DOI] [PubMed]
  9. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  10. Grassl, T. & Korber, N. (2014). Acta Cryst. E70, i32. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Smolentsev, A. I., Gubanov, A. I., Zadesenets, A. V., Plyusnin, P. E., Baidina, I. A. & Korenev, S. V. (2010). J. Struct. Chem. 51, 709–713.
  13. Steiner, T. (2002). Angew. Chem., 114, 50–80.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814012343/pk2522sup1.cif

e-70-00i31-sup1.cif (16.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012343/pk2522Isup2.hkl

e-70-00i31-Isup2.hkl (67.5KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814012343/pk2522Isup3.mol

CCDC reference: 1005538

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES