Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 21;70(Pt 7):o802. doi: 10.1107/S160053681401383X

Ethyl 2,6-bis­(4-chloro­phen­yl)-1-iso­cyano-4-oxo­cyclo­hexa­necarboxyl­ate

Dawei Zhang a, Peng Yang a, Wei Liu a, Jing Li b,*
PMCID: PMC4120570  PMID: 25161583

Abstract

In the title compound, C22H19Cl2NO3, the central six-membered ring is in a twist-boat conformation. The two aryl groups are in equatorial positions, trans to each other and with a dihedral angle of 77.50 (2)° between them. One of the least hindered –CH2– groups and one of the aryl-substituted C atoms, with its axial H atom, are in the flagpole positions. The eth­oxy­carbonyl group is in an equatorial position and is cis to the second aryl group. In the crystal, molecules are linked via weak C—H⋯O hydrogen bonds, forming chains along [010].

Keywords: crystal structure

Related literature  

For the synthesis, see: Zhang et al. (2010); Tan et al. (2009). For related structures, see: Rowland & Gill (1988); Aleman et al. (2009); Wu et al. (2011); Li et al. (2011). For other [5 + 1] annulation reactions, see: Bi et al. (2005); Zhao et al. (2006); Fu et al. (2009); Xu et al. (2012).graphic file with name e-70-0o802-scheme1.jpg

Experimental  

Crystal data  

  • C22H19Cl2NO3

  • M r = 416.28

  • Monoclinic, Inline graphic

  • a = 21.6980 (17) Å

  • b = 11.0770 (19) Å

  • c = 17.515 (3) Å

  • β = 104.535 (2)°

  • V = 4075.0 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.15 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.932, T max = 0.951

  • 9983 measured reflections

  • 3602 independent reflections

  • 2584 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.117

  • S = 1.01

  • 3602 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681401383X/lr2127sup1.cif

e-70-0o802-sup1.cif (21.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681401383X/lr2127Isup2.hkl

e-70-0o802-Isup2.hkl (173.1KB, hkl)

Supporting information file. DOI: 10.1107/S160053681401383X/lr2127Isup3.cml

CCDC reference: 1008201

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.98 2.57 3.218 (3) 123

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support of this research by the Science and Technology Development Program Foundation of Jilin Province (No. 20140204022NY) and the Inter­disciplinary Innovation Fund of Jilin University (No. 450060481143) is gratefully acknowledged.

supplementary crystallographic information

S1. Introduction

S2. Experimental

S2.1. Synthesis and crystallization

To the mixture of 1,5-bis­(4-chloro­phenyl)­penta-1,4-dien-3-one (303 mg, 1.0 mmol) and ethyl iso­cyano­acetate (0.132 mL, 1.2 mmol) in DMF (5 mL) was added 1,8-di­aza­bicyclo [5.4.0]undec-7-ene (DBU) (0.015 mL, 0.1 mmol) in one portion at room temperature. The reaction mixture was stirred at room temperature, and the reaction mixture was monitored by TLC. After the substrate 1,5-bis­(4-chloro­phenyl)­penta-1,4-dien-3-one was consumed, the resulting mixture was poured into ice-water (30 mL) under stirring. The precipitated solid was collected by filtration, washed with water (3 × 10 mL), and dried under vacuum to afford the crude product, which was purified by flash chromatography (silica gel, petroleum ether : di­ethyl ether = 3:1, V/V) to give ethyl 2,6-bis­(4-chloro­phenyl)-1-iso­cyano-4-oxo­cyclo­hexane­carboxyl­ate (387 mg, 93%). The material was recrystallized from a mixture of petroleum ether and di­ethyl ether to provide a crystalline solid.

S2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.Hydrogen atoms were generated in idealized positions (according to the sp2 or sp3 geometries of their parent carbon), and then refined using a riding model with fixed C—H distances (C—H = 0.95–1.00 Å) and with Uiso(H) = 1.2Ueq(C).

S3. Results and discussion

[5+1] annulation is a novel strategy for the construction of six-membered cyclic compounds and total synthesis of natural products (Rowland & Gill, 1988; Wu et al., 2011; Li et al., 2011). The regiospecific [5+1] annulation reactions have drawn much attentions and both the five-carbon 1,5-bielectrophiles and the one-atom nucleophiles been explored extensively (Bi et al., 2005; Zhao et al., 2006; Fu et al., 2009; Xu et al., 2012). We have been dealing with functionalized ketene di­thio­acetals for several years and have succeeded in the preparation of six-membered aromatic and heterocyclic compounds based on [5C+1X] annulations (Zhang et al., 2010; Tan et al., 2009). The aromatic cyclic compounds are analogues of phenyl­alanine (Phe) which are potential moieties for the synthesis of peptide analogues with controlled fold in the backbone. The constrained ring systems play important roles in restricting torsional angle χ1 and in peptide receptor recognition processes (Aleman et al., 2009).

The crystal structure of title compound, a phenyl substituted highly constrained cyclo­hexane analogue of Ph, is reported in this paper. Due to the steric hindrance, the oxo­cyclo­hexane is in a twist-boat conformation (Fig. 1). The ethoxyl carbonyl and the two aryl groups are located in equatorial positions. The dihedral angle between two aromatic rings is 77.495 (20)°. The C7 axial hydrogen and the CH2 bonded to C10 are on the flagpole positions of the boat conformation, which give the least torsional strain. The equatorial ethoxyl carbonyl on C18 and the equatorial aryl group on C11 also lead the formation of a comparable stable boat conformation of this compound.

Figures

Fig. 1.

Fig. 1.

View of the molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level.

Crystal data

C22H19Cl2NO3 F(000) = 1728
Mr = 416.28 Dx = 1.357 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2yc Cell parameters from 106 reflections
a = 21.6980 (17) Å θ = 1.3–26.0°
b = 11.0770 (19) Å µ = 0.34 mm1
c = 17.515 (3) Å T = 293 K
β = 104.535 (2)° BLOCK, colorless
V = 4075.0 (10) Å3 0.21 × 0.19 × 0.15 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3602 independent reflections
Radiation source: fine-focus sealed tube 2584 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
ω scans θmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −25→25
Tmin = 0.932, Tmax = 0.951 k = −13→13
9983 measured reflections l = −20→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0514P)2 + 2.7869P] where P = (Fo2 + 2Fc2)/3
3602 reflections (Δ/σ)max < 0.001
253 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl2 −0.01505 (3) 0.07074 (6) 0.62309 (5) 0.0780 (2)
Cl1 0.59500 (4) 0.06816 (9) 0.99930 (6) 0.1128 (4)
O2 0.30900 (7) 0.21848 (13) 0.84990 (9) 0.0528 (4)
C12 0.18929 (9) 0.19357 (17) 0.66846 (12) 0.0443 (5)
C18 0.30971 (9) 0.15687 (17) 0.72324 (12) 0.0435 (5)
N1 0.30407 (9) 0.04712 (16) 0.67773 (12) 0.0524 (5)
C11 0.25594 (9) 0.24575 (18) 0.68262 (12) 0.0424 (5)
H11 0.2578 0.3129 0.7196 0.051*
C4 0.42949 (9) 0.17517 (19) 0.79764 (14) 0.0492 (5)
O1 0.28944 (9) 0.02289 (15) 0.82275 (11) 0.0759 (5)
C7 0.37764 (9) 0.21213 (18) 0.72628 (13) 0.0477 (5)
H7 0.3901 0.1767 0.6811 0.057*
C19 0.30148 (9) 0.12206 (19) 0.80460 (13) 0.0475 (5)
C9 0.33050 (11) 0.3749 (2) 0.63092 (15) 0.0552 (6)
C17 0.15361 (10) 0.2176 (2) 0.72194 (14) 0.0561 (6)
H17 0.1719 0.2608 0.7676 0.067*
O3 0.34259 (9) 0.45029 (17) 0.58723 (12) 0.0832 (6)
C14 0.09922 (11) 0.0868 (2) 0.58857 (14) 0.0567 (6)
H14 0.0811 0.0413 0.5440 0.068*
C10 0.27117 (10) 0.2997 (2) 0.60953 (13) 0.0517 (5)
H10A 0.2767 0.2352 0.5744 0.062*
H10B 0.2358 0.3494 0.5818 0.062*
C15 0.06450 (10) 0.1152 (2) 0.64196 (15) 0.0551 (6)
C8 0.37399 (10) 0.34828 (19) 0.71039 (14) 0.0542 (6)
H8A 0.3584 0.3888 0.7509 0.065*
H8B 0.4162 0.3791 0.7125 0.065*
C13 0.16142 (10) 0.12688 (19) 0.60210 (13) 0.0526 (6)
H13 0.1849 0.1086 0.5659 0.063*
C20 0.30188 (13) 0.2027 (3) 0.93036 (14) 0.0705 (7)
H20A 0.2595 0.2272 0.9327 0.085*
H20B 0.3074 0.1183 0.9452 0.085*
C16 0.09146 (11) 0.1789 (2) 0.70886 (16) 0.0646 (7)
H16 0.0680 0.1961 0.7453 0.078*
C3 0.46190 (11) 0.2575 (2) 0.85150 (16) 0.0690 (7)
H3 0.4496 0.3381 0.8459 0.083*
C5 0.44867 (12) 0.0562 (2) 0.80921 (17) 0.0694 (7)
H5 0.4275 −0.0025 0.7744 0.083*
C1 0.53022 (11) 0.1084 (3) 0.92278 (17) 0.0717 (7)
C6 0.49881 (14) 0.0224 (3) 0.87177 (19) 0.0829 (9)
H6 0.5109 −0.0582 0.8789 0.099*
C22 0.30053 (14) −0.0380 (2) 0.63980 (18) 0.0765 (8)
C2 0.51188 (12) 0.2252 (3) 0.91352 (18) 0.0793 (8)
H2 0.5329 0.2834 0.9489 0.095*
C21 0.34862 (18) 0.2745 (3) 0.98441 (18) 0.1104 (12)
H21A 0.3437 0.2640 1.0370 0.166*
H21B 0.3428 0.3581 0.9698 0.166*
H21C 0.3905 0.2493 0.9825 0.166*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl2 0.0464 (3) 0.0811 (5) 0.1010 (6) −0.0096 (3) 0.0083 (3) −0.0033 (4)
Cl1 0.0699 (5) 0.1466 (8) 0.1075 (7) 0.0144 (5) −0.0045 (4) 0.0360 (6)
O2 0.0637 (9) 0.0523 (9) 0.0461 (9) −0.0020 (7) 0.0207 (7) 0.0016 (7)
C12 0.0474 (11) 0.0384 (10) 0.0454 (12) 0.0012 (9) 0.0087 (10) 0.0009 (9)
C18 0.0492 (11) 0.0345 (10) 0.0487 (13) −0.0035 (8) 0.0159 (10) −0.0030 (9)
N1 0.0580 (11) 0.0386 (10) 0.0609 (12) −0.0003 (8) 0.0153 (9) −0.0051 (9)
C11 0.0472 (11) 0.0377 (10) 0.0428 (12) −0.0030 (8) 0.0122 (9) −0.0017 (9)
C4 0.0417 (11) 0.0520 (12) 0.0586 (14) −0.0016 (9) 0.0216 (10) 0.0030 (11)
O1 0.1060 (14) 0.0511 (10) 0.0770 (13) −0.0162 (9) 0.0350 (11) 0.0125 (9)
C7 0.0480 (12) 0.0463 (12) 0.0534 (13) −0.0034 (9) 0.0210 (10) −0.0009 (10)
C19 0.0430 (11) 0.0458 (12) 0.0543 (14) −0.0024 (9) 0.0136 (10) 0.0049 (11)
C9 0.0647 (14) 0.0492 (12) 0.0582 (15) −0.0031 (11) 0.0275 (12) 0.0072 (12)
C17 0.0511 (13) 0.0594 (14) 0.0583 (15) −0.0059 (10) 0.0147 (11) −0.0144 (12)
O3 0.0888 (13) 0.0857 (13) 0.0778 (13) −0.0170 (10) 0.0257 (11) 0.0318 (11)
C14 0.0580 (14) 0.0522 (13) 0.0528 (14) −0.0055 (10) 0.0009 (11) −0.0060 (11)
C10 0.0611 (13) 0.0484 (12) 0.0456 (13) 0.0006 (10) 0.0133 (11) 0.0013 (10)
C15 0.0456 (12) 0.0486 (12) 0.0674 (16) −0.0023 (10) 0.0076 (11) 0.0037 (12)
C8 0.0538 (12) 0.0498 (13) 0.0609 (15) −0.0114 (10) 0.0179 (11) 0.0043 (11)
C13 0.0548 (13) 0.0538 (13) 0.0491 (14) −0.0020 (10) 0.0130 (11) −0.0039 (11)
C20 0.0799 (17) 0.0865 (19) 0.0499 (15) 0.0054 (14) 0.0254 (14) 0.0099 (14)
C16 0.0535 (13) 0.0734 (16) 0.0714 (17) −0.0050 (12) 0.0240 (13) −0.0131 (14)
C3 0.0583 (14) 0.0608 (15) 0.0810 (19) 0.0014 (12) 0.0046 (14) −0.0045 (14)
C5 0.0659 (15) 0.0577 (15) 0.0817 (19) 0.0030 (12) 0.0130 (14) 0.0013 (14)
C1 0.0472 (13) 0.095 (2) 0.0732 (18) 0.0015 (13) 0.0148 (13) 0.0141 (16)
C6 0.0760 (18) 0.0686 (17) 0.102 (2) 0.0186 (15) 0.0177 (17) 0.0211 (17)
C22 0.0902 (19) 0.0528 (15) 0.083 (2) 0.0022 (14) 0.0155 (16) −0.0109 (15)
C2 0.0608 (16) 0.087 (2) 0.080 (2) −0.0032 (14) −0.0005 (15) −0.0080 (16)
C21 0.143 (3) 0.130 (3) 0.0617 (19) −0.051 (2) 0.033 (2) −0.021 (2)

Geometric parameters (Å, º)

Cl2—C15 1.745 (2) C14—C15 1.377 (3)
Cl1—C1 1.739 (3) C14—C13 1.383 (3)
O2—C19 1.316 (3) C14—H14 0.9300
O2—C20 1.466 (3) C10—H10A 0.9700
C12—C13 1.382 (3) C10—H10B 0.9700
C12—C17 1.383 (3) C15—C16 1.367 (3)
C12—C11 1.519 (3) C8—H8A 0.9700
C18—N1 1.442 (3) C8—H8B 0.9700
C18—C19 1.529 (3) C13—H13 0.9300
C18—C11 1.556 (3) C20—C21 1.441 (4)
C18—C7 1.584 (3) C20—H20A 0.9700
N1—C22 1.144 (3) C20—H20B 0.9700
C11—C10 1.523 (3) C16—H16 0.9300
C11—H11 0.9800 C3—C2 1.376 (4)
C4—C3 1.373 (3) C3—H3 0.9300
C4—C5 1.382 (3) C5—C6 1.388 (4)
C4—C7 1.513 (3) C5—H5 0.9300
O1—C19 1.191 (3) C1—C2 1.352 (4)
C7—C8 1.532 (3) C1—C6 1.365 (4)
C7—H7 0.9800 C6—H6 0.9300
C9—O3 1.205 (3) C2—H2 0.9300
C9—C10 1.500 (3) C21—H21A 0.9600
C9—C8 1.502 (3) C21—H21B 0.9600
C17—C16 1.378 (3) C21—H21C 0.9600
C17—H17 0.9300
C19—O2—C20 117.11 (18) H10A—C10—H10B 108.0
C13—C12—C17 118.1 (2) C16—C15—C14 120.7 (2)
C13—C12—C11 122.58 (19) C16—C15—Cl2 119.88 (19)
C17—C12—C11 119.21 (19) C14—C15—Cl2 119.39 (18)
N1—C18—C19 106.80 (16) C9—C8—C7 110.72 (19)
N1—C18—C11 109.33 (17) C9—C8—H8A 109.5
C19—C18—C11 109.64 (16) C7—C8—H8A 109.5
N1—C18—C7 107.07 (16) C9—C8—H8B 109.5
C19—C18—C7 113.03 (17) C7—C8—H8B 109.5
C11—C18—C7 110.82 (15) H8A—C8—H8B 108.1
C22—N1—C18 177.6 (2) C12—C13—C14 121.2 (2)
C12—C11—C10 114.26 (17) C12—C13—H13 119.4
C12—C11—C18 114.07 (16) C14—C13—H13 119.4
C10—C11—C18 109.69 (16) C21—C20—O2 109.8 (2)
C12—C11—H11 106.0 C21—C20—H20A 109.7
C10—C11—H11 106.0 O2—C20—H20A 109.7
C18—C11—H11 106.0 C21—C20—H20B 109.7
C3—C4—C5 116.7 (2) O2—C20—H20B 109.7
C3—C4—C7 122.3 (2) H20A—C20—H20B 108.2
C5—C4—C7 120.9 (2) C15—C16—C17 119.6 (2)
C4—C7—C8 114.22 (18) C15—C16—H16 120.2
C4—C7—C18 114.57 (17) C17—C16—H16 120.2
C8—C7—C18 111.65 (16) C4—C3—C2 122.4 (3)
C4—C7—H7 105.1 C4—C3—H3 118.8
C8—C7—H7 105.1 C2—C3—H3 118.8
C18—C7—H7 105.1 C4—C5—C6 121.4 (3)
O1—C19—O2 126.2 (2) C4—C5—H5 119.3
O1—C19—C18 124.5 (2) C6—C5—H5 119.3
O2—C19—C18 109.36 (17) C2—C1—C6 120.4 (3)
O3—C9—C10 122.4 (2) C2—C1—Cl1 119.6 (2)
O3—C9—C8 122.6 (2) C6—C1—Cl1 120.0 (2)
C10—C9—C8 114.99 (18) C1—C6—C5 119.5 (3)
C16—C17—C12 121.2 (2) C1—C6—H6 120.2
C16—C17—H17 119.4 C5—C6—H6 120.2
C12—C17—H17 119.4 C1—C2—C3 119.6 (3)
C15—C14—C13 119.1 (2) C1—C2—H2 120.2
C15—C14—H14 120.4 C3—C2—H2 120.2
C13—C14—H14 120.4 C20—C21—H21A 109.5
C9—C10—C11 111.22 (18) C20—C21—H21B 109.5
C9—C10—H10A 109.4 H21A—C21—H21B 109.5
C11—C10—H10A 109.4 C20—C21—H21C 109.5
C9—C10—H10B 109.4 H21A—C21—H21C 109.5
C11—C10—H10B 109.4 H21B—C21—H21C 109.5
C19—C18—N1—C22 −164 (6) C7—C18—C19—O2 59.8 (2)
C11—C18—N1—C22 78 (6) C13—C12—C17—C16 −1.5 (3)
C7—C18—N1—C22 −43 (6) C11—C12—C17—C16 175.7 (2)
C13—C12—C11—C10 41.3 (3) O3—C9—C10—C11 −160.1 (2)
C17—C12—C11—C10 −135.7 (2) C8—C9—C10—C11 20.6 (3)
C13—C12—C11—C18 −86.0 (2) C12—C11—C10—C9 166.34 (18)
C17—C12—C11—C18 96.9 (2) C18—C11—C10—C9 −64.1 (2)
N1—C18—C11—C12 55.2 (2) C13—C14—C15—C16 −2.0 (4)
C19—C18—C11—C12 −61.5 (2) C13—C14—C15—Cl2 177.18 (17)
C7—C18—C11—C12 173.01 (17) O3—C9—C8—C7 −139.3 (2)
N1—C18—C11—C10 −74.4 (2) C10—C9—C8—C7 40.1 (3)
C19—C18—C11—C10 168.84 (17) C4—C7—C8—C9 169.06 (18)
C7—C18—C11—C10 43.4 (2) C18—C7—C8—C9 −58.9 (2)
C3—C4—C7—C8 11.8 (3) C17—C12—C13—C14 1.1 (3)
C5—C4—C7—C8 −164.7 (2) C11—C12—C13—C14 −176.0 (2)
C3—C4—C7—C18 −118.7 (2) C15—C14—C13—C12 0.7 (3)
C5—C4—C7—C18 64.7 (3) C19—O2—C20—C21 140.9 (3)
N1—C18—C7—C4 −93.2 (2) C14—C15—C16—C17 1.6 (4)
C19—C18—C7—C4 24.1 (2) Cl2—C15—C16—C17 −177.61 (19)
C11—C18—C7—C4 147.63 (18) C12—C17—C16—C15 0.2 (4)
N1—C18—C7—C8 134.96 (19) C5—C4—C3—C2 1.1 (4)
C19—C18—C7—C8 −107.7 (2) C7—C4—C3—C2 −175.6 (2)
C11—C18—C7—C8 15.8 (2) C3—C4—C5—C6 −0.8 (4)
C20—O2—C19—O1 −0.1 (3) C7—C4—C5—C6 176.0 (2)
C20—O2—C19—C18 179.17 (17) C2—C1—C6—C5 1.3 (4)
N1—C18—C19—O1 −3.5 (3) Cl1—C1—C6—C5 −177.6 (2)
C11—C18—C19—O1 114.8 (2) C4—C5—C6—C1 −0.4 (4)
C7—C18—C19—O1 −121.0 (2) C6—C1—C2—C3 −1.0 (4)
N1—C18—C19—O2 177.26 (16) Cl1—C1—C2—C3 178.0 (2)
C11—C18—C19—O2 −64.4 (2) C4—C3—C2—C1 −0.2 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C11—H11···O1i 0.98 2.57 3.218 (3) 123

Symmetry code: (i) −x+1/2, y+1/2, −z+3/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LR2127).

References

  1. Aleman, C., Jiménez, A. I., Cativiela, C., Nussinov, R. & Casanovas, J. (2009). J. Org. Chem. 74, 7834–7843. [DOI] [PMC free article] [PubMed]
  2. Bi, X., Dong, D., Liu, Q., Pan, W., Zhao, L. & Li, B. (2005). J. Am. Chem. Soc. 127, 4578–4579. [DOI] [PubMed]
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Fu, Z., Wang, M., Dong, Y., Liu, J. & Liu, Q. (2009). J. Org. Chem. 74, 6105–6110. [DOI] [PubMed]
  5. Li, Y., Xu, X., Tan, J., Xia, C., Zhang, D. & Liu, Q. (2011). J. Am. Chem. Soc. 133, 1775–1777. [DOI] [PubMed]
  6. Rowland, A. T. & Gill, B. C. (1988). J. Org. Chem. 53, 434–437.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Tan, J., Xu, X., Zhang, L., Li, Y. & Liu, Q. (2009). Angew. Chem. Int. Ed. 48, 2868–2872. [DOI] [PubMed]
  10. Wu, B., Liu, G., Li, M., Zhang, Y., Zhang, S., Qiu, J., Xu, X., Ji, S. & Wang, X. (2011). Chem. Commun. 47, 3992–3994. [DOI] [PubMed]
  11. Xu, X., Liu, Y. & Park, C. (2012). Angew. Chem. Int. Ed. 51, 9372–9376. [DOI] [PubMed]
  12. Zhang, D., Xu, X. & &Liu, Q. (2010). Synlett, 6, 917–920.
  13. Zhao, L., Liang, F., Bi, X., Sun, S. & Liu, Q. (2006). J. Org. Chem. 71, 1094–1098. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681401383X/lr2127sup1.cif

e-70-0o802-sup1.cif (21.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681401383X/lr2127Isup2.hkl

e-70-0o802-Isup2.hkl (173.1KB, hkl)

Supporting information file. DOI: 10.1107/S160053681401383X/lr2127Isup3.cml

CCDC reference: 1008201

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES