Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 25;70(Pt 7):o809–o810. doi: 10.1107/S1600536814014317

(E)-1-([1,1′-Biphen­yl]-4-yl)-3-(2-methyl­phen­yl)prop-2-en-1-one

D Shanthi a, T Vidhya Sagar a, M Kayalvizhi b, G Vasuki b, A Thiruvalluvar c,*
PMCID: PMC4120573  PMID: 25161590

Abstract

In the title mol­ecule, C22H18O, the o-tolyl ring is connected through a conjugated double bond. The mol­ecule adopts an E conformation and the C—C=C—C torsion angle is 178.77 (13)°. The overall conformation may be described by the values of dihedral angles between the different planes. The terminal rings are twisted by an angle of 54.75 (8)°, while the biphenyl part is not planar, the dihedral angle between the planes of the rings being 40.65 (8)°. The dihedral angle between the benzene rings is 14.10 (7)°. There are three weak C—H⋯π inter­actions found in the crystal structure. No classic hydrogen bonds are observed.

Keywords: crystal structure

Related literature  

For the bioactivity of chalcones, see: Dimmock et al. (1999). For biological applications of chalcones, see: Opletalova (2000); Opletalova & Sedivy (1999). For chalcones as non-linear optical materials, see: Fichou et al. (1988); Goto et al. (1991). For further applications of chalcones, see: Sarojini et al. (2006). For the crystal structures of related compounds, see: Betz et al. (2011a ,b ). For bond-length data, see: Allen et al. (1987).graphic file with name e-70-0o809-scheme1.jpg

Experimental  

Crystal data  

  • C22H18O

  • M r = 298.36

  • Triclinic, Inline graphic

  • a = 7.6396 (3) Å

  • b = 9.9106 (4) Å

  • c = 11.9263 (4) Å

  • α = 103.166 (2)°

  • β = 104.713 (2)°

  • γ = 103.308 (2)°

  • V = 809.66 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 273 K

  • 0.40 × 0.35 × 0.30 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.908, T max = 1.000

  • 18636 measured reflections

  • 4534 independent reflections

  • 3291 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.151

  • S = 1.06

  • 4534 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814014317/jj2188sup1.cif

e-70-0o809-sup1.cif (19.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814014317/jj2188Isup2.hkl

e-70-0o809-Isup2.hkl (248.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814014317/jj2188Isup3.cdx

Supporting information file. DOI: 10.1107/S1600536814014317/jj2188Isup4.cml

CCDC reference: 977614

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the C2–C7 methyl­benzene, C11–C16 benzene and C17–C22 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1CCg2i 0.96 2.97 3.6689 (17) 131
C5—H5⋯Cg3ii 0.93 2.84 3.5126 (18) 130
C21—H21⋯Cg1iii 0.93 2.99 3.632 (2) 127

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are thankful to the Sophisticated Analytical Instrument Facility (SAIF), IITM, Chennai 600 036, Tamilnadu, India, for the single-crystal X-ray data.

supplementary crystallographic information

S1. Comment

Bioactivities of chalcones were reported by Dimmock et al., (1999). The antibacterial, fungistatic and fungicidal properties of these compounds have also been reviewed (Opletalova et al. 2000, 1999). In addition with appropriate substituents, chalcones are a class of non-linear optical materials (Fichou et al. 1988, Goto et al. 1991). Recently, it has been noted that among many organic second harmonic generation, chalcone derivatives have excellent blue light transmittance and good cyrstallizability (Sarojini et al. 2006). The related compounds whose structures have been solved by X-ray are (2E)-1-(4,4''-Difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl)- 3-(4-fluorophenyl)prop-2-en-1-one (Betz et al. 2011a) and (E)-1-(4,4''-Difluoro-5'-methoxy-1,1':3',1''-terphenyl-4' -yl)-3-(4-nitrophenyl)prop-2-en-1-one (Betz et al. 2011b).

In the title molecule (Fig. 1), C22H18O, the o-tolyl ring is connected through a conjugated double bond. The molecule adopts an E configuration and the C7—C8—C9—C10 torsion angle is 178.77 (13)°. Further, the torsion angle [C8—C9—C10—C11 = -164.91 (13)°] shows that the prop-2-en-1-one unit is not planar. The overall conformation of the compound may be described by the values of dihedral angles between the different planes. The terminal rings (C2—C7) and (C17—C22) are twisted by an angle of 54.75 (8)°, while the biphenyl part is not planar, the dihedral angle between the planes of the rings (C11—C16) and (C17—C22) being 40.65 (8)°. The dihedral angle between the benzene rings (C2—C7) and (C11—C16) is 14.10 (7)°.

There are three weak C1—H1C···π, C5—H5···π and C21—H21···π interactions involving the central benzene ring (C11—C16), the terminal phenyl ring (C17—C22) and the terminal benzene ring (C2—C7), respectively, are found in the crystal structure. The Car—Csp3, Car—Car and C═O bond lengths in (I) are within their normal ranges (Allen et al., 1987). No classic hydrogen bonds are observed.

S2. Experimental

Biphenyl acetone (1.06 g, 10 mmol) and 2-methylbenzaldehyde (1.06 g, 10 mmol) in ethanol (25 ml) is mixed in the presence of NaOH (10 ml 30%). The reaction mixture was stirred for 6 h. Then the contents of the flask were poured into ice cold water (250 ml) and left for 12 h. The solid obtained was filtered and recrystallized for three to four times with ethanol. The colourless single crystals of the title compound used for X-ray diffraction studies were grown by slow evaporation of acetone. Yield: 1.48 g (70%).

S3. Refinement

All H-atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å (aromatic), 0.96 Å (methyl group), with Uiso(H) = 1.2 or 1.5Ueq(C); for aromatic and methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The partial packing of the title compound, showing the three weak C—H···π interactions.

Crystal data

C22H18O Z = 2
Mr = 298.36 F(000) = 316
Triclinic, P1 Dx = 1.224 Mg m3
Hall symbol: -P 1 Melting point: 393 K
a = 7.6396 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.9106 (4) Å Cell parameters from 7102 reflections
c = 11.9263 (4) Å θ = 2.8–26.3°
α = 103.166 (2)° µ = 0.07 mm1
β = 104.713 (2)° T = 273 K
γ = 103.308 (2)° Block, colourless
V = 809.66 (6) Å3 0.40 × 0.35 × 0.30 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 4534 independent reflections
Radiation source: fine-focus sealed tube 3291 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
ω and φ scan θmax = 29.6°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −10→10
Tmin = 0.908, Tmax = 1.000 k = −13→13
18636 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.073P)2 + 0.1155P] where P = (Fo2 + 2Fc2)/3
4534 reflections (Δ/σ)max = 0.001
209 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.37261 (17) 0.60727 (11) 0.09681 (9) 0.0666 (4)
C1 0.1424 (2) 0.25545 (16) −0.31150 (12) 0.0598 (5)
C2 0.02836 (17) 0.14897 (13) −0.26587 (10) 0.0413 (3)
C3 −0.08815 (19) 0.01392 (14) −0.34508 (11) 0.0489 (4)
C4 −0.1977 (2) −0.08585 (15) −0.30810 (13) 0.0555 (4)
C5 −0.1963 (2) −0.05199 (16) −0.18929 (14) 0.0594 (5)
C6 −0.0836 (2) 0.08192 (15) −0.10901 (12) 0.0513 (4)
C7 0.02996 (17) 0.18386 (13) −0.14437 (10) 0.0396 (3)
C8 0.14997 (19) 0.32479 (13) −0.05697 (10) 0.0447 (3)
C9 0.13129 (18) 0.38670 (14) 0.04796 (11) 0.0477 (4)
C10 0.26312 (18) 0.52846 (14) 0.13063 (10) 0.0448 (4)
C11 0.26370 (17) 0.57385 (13) 0.25891 (10) 0.0404 (3)
C12 0.1919 (2) 0.47482 (14) 0.31431 (11) 0.0478 (4)
C13 0.20814 (19) 0.51956 (14) 0.43612 (11) 0.0476 (4)
C14 0.29252 (17) 0.66487 (13) 0.50571 (10) 0.0397 (3)
C15 0.35955 (18) 0.76420 (13) 0.44861 (10) 0.0429 (3)
C16 0.34808 (18) 0.71934 (13) 0.32782 (10) 0.0427 (3)
C17 0.30998 (17) 0.71263 (14) 0.63651 (10) 0.0422 (3)
C18 0.35892 (19) 0.62864 (15) 0.71095 (11) 0.0481 (4)
C19 0.3769 (2) 0.67267 (17) 0.83319 (12) 0.0560 (5)
C20 0.3468 (2) 0.80073 (19) 0.88272 (12) 0.0636 (5)
C21 0.2975 (3) 0.8849 (2) 0.81035 (13) 0.0695 (6)
C22 0.2805 (2) 0.84196 (17) 0.68813 (12) 0.0574 (5)
H1A 0.12155 0.21253 −0.39637 0.0897*
H1B 0.27494 0.28020 −0.26678 0.0897*
H1C 0.10373 0.34179 −0.30056 0.0897*
H3 −0.09204 −0.00968 −0.42594 0.0587*
H4 −0.27269 −0.17613 −0.36309 0.0666*
H5 −0.27074 −0.11885 −0.16353 0.0712*
H6 −0.08350 0.10469 −0.02891 0.0615*
H8 0.24937 0.37590 −0.07733 0.0536*
H9 0.03187 0.33939 0.07040 0.0573*
H12 0.13232 0.37751 0.26899 0.0574*
H13 0.16190 0.45138 0.47211 0.0572*
H15 0.41293 0.86238 0.49267 0.0514*
H16 0.39719 0.78701 0.29226 0.0512*
H18 0.37988 0.54158 0.67813 0.0576*
H19 0.40953 0.61518 0.88177 0.0672*
H20 0.35956 0.83064 0.96495 0.0763*
H21 0.27551 0.97129 0.84371 0.0834*
H22 0.24891 0.90049 0.64033 0.0688*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0822 (8) 0.0610 (6) 0.0424 (5) −0.0025 (5) 0.0263 (5) 0.0071 (4)
C1 0.0701 (10) 0.0586 (8) 0.0426 (7) 0.0047 (7) 0.0249 (6) 0.0080 (6)
C2 0.0422 (6) 0.0426 (6) 0.0362 (5) 0.0136 (5) 0.0117 (4) 0.0071 (4)
C3 0.0517 (8) 0.0478 (7) 0.0379 (6) 0.0152 (6) 0.0086 (5) 0.0020 (5)
C4 0.0492 (8) 0.0431 (7) 0.0561 (8) 0.0065 (6) 0.0045 (6) 0.0030 (6)
C5 0.0536 (8) 0.0522 (8) 0.0661 (9) 0.0044 (6) 0.0186 (7) 0.0191 (7)
C6 0.0555 (8) 0.0524 (8) 0.0445 (6) 0.0119 (6) 0.0196 (6) 0.0130 (5)
C7 0.0407 (6) 0.0410 (6) 0.0352 (5) 0.0135 (5) 0.0112 (4) 0.0082 (4)
C8 0.0502 (7) 0.0439 (6) 0.0354 (5) 0.0097 (5) 0.0137 (5) 0.0084 (5)
C9 0.0459 (7) 0.0517 (7) 0.0371 (6) 0.0085 (6) 0.0139 (5) 0.0038 (5)
C10 0.0481 (7) 0.0484 (7) 0.0341 (5) 0.0138 (5) 0.0123 (5) 0.0075 (5)
C11 0.0410 (6) 0.0434 (6) 0.0329 (5) 0.0127 (5) 0.0100 (4) 0.0066 (4)
C12 0.0564 (8) 0.0383 (6) 0.0404 (6) 0.0067 (5) 0.0159 (5) 0.0040 (5)
C13 0.0565 (8) 0.0421 (7) 0.0408 (6) 0.0070 (6) 0.0183 (5) 0.0114 (5)
C14 0.0398 (6) 0.0430 (6) 0.0340 (5) 0.0128 (5) 0.0108 (4) 0.0083 (4)
C15 0.0497 (7) 0.0358 (6) 0.0359 (5) 0.0099 (5) 0.0094 (5) 0.0057 (4)
C16 0.0482 (7) 0.0406 (6) 0.0362 (5) 0.0100 (5) 0.0116 (5) 0.0120 (4)
C17 0.0395 (6) 0.0481 (7) 0.0347 (5) 0.0104 (5) 0.0121 (4) 0.0077 (5)
C18 0.0505 (7) 0.0489 (7) 0.0420 (6) 0.0085 (6) 0.0166 (5) 0.0136 (5)
C19 0.0536 (8) 0.0686 (9) 0.0429 (7) 0.0081 (7) 0.0165 (6) 0.0212 (6)
C20 0.0582 (9) 0.0913 (12) 0.0376 (6) 0.0204 (8) 0.0194 (6) 0.0108 (7)
C21 0.0794 (11) 0.0832 (11) 0.0489 (8) 0.0428 (9) 0.0238 (7) 0.0041 (7)
C22 0.0673 (9) 0.0667 (9) 0.0428 (7) 0.0353 (8) 0.0169 (6) 0.0116 (6)

Geometric parameters (Å, º)

O1—C10 1.2192 (18) C19—C20 1.369 (2)
C1—C2 1.499 (2) C20—C21 1.375 (3)
C2—C3 1.3873 (18) C21—C22 1.385 (2)
C2—C7 1.4072 (16) C1—H1A 0.9600
C3—C4 1.370 (2) C1—H1B 0.9600
C4—C5 1.376 (2) C1—H1C 0.9600
C5—C6 1.377 (2) C3—H3 0.9300
C6—C7 1.388 (2) C4—H4 0.9300
C7—C8 1.4628 (17) C5—H5 0.9300
C8—C9 1.3207 (17) C6—H6 0.9300
C9—C10 1.4743 (19) C8—H8 0.9300
C10—C11 1.4917 (16) C9—H9 0.9300
C11—C12 1.3901 (19) C12—H12 0.9300
C11—C16 1.3904 (18) C13—H13 0.9300
C12—C13 1.3828 (17) C15—H15 0.9300
C13—C14 1.3909 (18) C16—H16 0.9300
C14—C15 1.3948 (18) C18—H18 0.9300
C14—C17 1.4847 (16) C19—H19 0.9300
C15—C16 1.3809 (16) C20—H20 0.9300
C17—C18 1.3900 (19) C21—H21 0.9300
C17—C22 1.384 (2) C22—H22 0.9300
C18—C19 1.3840 (18)
C1—C2—C3 120.06 (11) C2—C1—H1C 109.00
C1—C2—C7 121.73 (11) H1A—C1—H1B 109.00
C3—C2—C7 118.16 (12) H1A—C1—H1C 109.00
C2—C3—C4 122.16 (12) H1B—C1—H1C 109.00
C3—C4—C5 119.78 (14) C2—C3—H3 119.00
C4—C5—C6 119.30 (15) C4—C3—H3 119.00
C5—C6—C7 121.79 (13) C3—C4—H4 120.00
C2—C7—C6 118.80 (12) C5—C4—H4 120.00
C2—C7—C8 120.48 (12) C4—C5—H5 120.00
C6—C7—C8 120.72 (11) C6—C5—H5 120.00
C7—C8—C9 126.52 (13) C5—C6—H6 119.00
C8—C9—C10 122.06 (13) C7—C6—H6 119.00
O1—C10—C9 121.45 (11) C7—C8—H8 117.00
O1—C10—C11 119.84 (12) C9—C8—H8 117.00
C9—C10—C11 118.70 (12) C8—C9—H9 119.00
C10—C11—C12 122.41 (11) C10—C9—H9 119.00
C10—C11—C16 118.91 (11) C11—C12—H12 120.00
C12—C11—C16 118.59 (11) C13—C12—H12 120.00
C11—C12—C13 120.66 (12) C12—C13—H13 119.00
C12—C13—C14 121.08 (13) C14—C13—H13 119.00
C13—C14—C15 117.89 (11) C14—C15—H15 119.00
C13—C14—C17 120.99 (12) C16—C15—H15 119.00
C15—C14—C17 121.12 (11) C11—C16—H16 120.00
C14—C15—C16 121.17 (12) C15—C16—H16 120.00
C11—C16—C15 120.55 (12) C17—C18—H18 120.00
C14—C17—C18 120.50 (12) C19—C18—H18 120.00
C14—C17—C22 121.33 (12) C18—C19—H19 120.00
C18—C17—C22 118.16 (11) C20—C19—H19 120.00
C17—C18—C19 120.97 (14) C19—C20—H20 120.00
C18—C19—C20 120.12 (14) C21—C20—H20 120.00
C19—C20—C21 119.72 (13) C20—C21—H21 120.00
C20—C21—C22 120.46 (17) C22—C21—H21 120.00
C17—C22—C21 120.57 (15) C17—C22—H22 120.00
C2—C1—H1A 109.00 C21—C22—H22 120.00
C2—C1—H1B 109.00
C1—C2—C3—C4 −178.74 (14) C16—C11—C12—C13 −1.5 (2)
C7—C2—C3—C4 −1.1 (2) C10—C11—C16—C15 −176.84 (13)
C1—C2—C7—C6 177.97 (13) C12—C11—C16—C15 −0.2 (2)
C1—C2—C7—C8 −2.3 (2) C11—C12—C13—C14 1.5 (2)
C3—C2—C7—C6 0.4 (2) C12—C13—C14—C15 0.3 (2)
C3—C2—C7—C8 −179.93 (14) C12—C13—C14—C17 −179.94 (14)
C2—C3—C4—C5 1.1 (2) C13—C14—C15—C16 −2.0 (2)
C3—C4—C5—C6 −0.3 (2) C17—C14—C15—C16 178.22 (13)
C4—C5—C6—C7 −0.4 (2) C13—C14—C17—C18 40.6 (2)
C5—C6—C7—C2 0.4 (2) C13—C14—C17—C22 −140.18 (15)
C5—C6—C7—C8 −179.34 (14) C15—C14—C17—C18 −139.63 (15)
C2—C7—C8—C9 161.41 (14) C15—C14—C17—C22 39.6 (2)
C6—C7—C8—C9 −18.9 (2) C14—C15—C16—C11 2.0 (2)
C7—C8—C9—C10 178.77 (13) C14—C17—C18—C19 179.54 (14)
C8—C9—C10—O1 13.9 (2) C22—C17—C18—C19 0.3 (2)
C8—C9—C10—C11 −164.91 (13) C14—C17—C22—C21 −179.96 (16)
O1—C10—C11—C12 −158.73 (15) C18—C17—C22—C21 −0.7 (2)
O1—C10—C11—C16 17.8 (2) C17—C18—C19—C20 −0.1 (2)
C9—C10—C11—C12 20.1 (2) C18—C19—C20—C21 0.4 (3)
C9—C10—C11—C16 −163.39 (13) C19—C20—C21—C22 −0.8 (3)
C10—C11—C12—C13 175.01 (14) C20—C21—C22—C17 1.0 (3)

Hydrogen-bond geometry (Å, º)

Cg1, Cg2 and Cg3 are the centroids of the C2–C7 methylbenzene, C11–C16 benzene and C17–C22 phenyl rings, respectively.

D—H···A D—H H···A D···A D—H···A
C1—H1C···Cg2i 0.96 2.97 3.6689 (17) 131
C5—H5···Cg3ii 0.93 2.84 3.5126 (18) 130
C21—H21···Cg1iii 0.93 2.99 3.632 (2) 127

Symmetry codes: (i) −x, −y+1, −z; (ii) x−1, y−1, z−1; (iii) x, y+1, z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: JJ2188).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Betz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2996–o2997. [DOI] [PMC free article] [PubMed]
  3. Betz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o3179–o3180. [DOI] [PMC free article] [PubMed]
  4. Bruker (2004). APEX2, SAINT, XPREP and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1150. [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Fichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn J. Appl. Phys. 27, L429–L430.
  8. Goto, Y., Hayashi, A., Kimura, Y. & Nakayam, M. (1991). J. Cryst. Growth, 108, 688–698.
  9. Opletalova, V. (2000). Ceska Slov. Farm. 49, 278–284. [PubMed]
  10. Opletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm. 48, 252–255. [PubMed]
  11. Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814014317/jj2188sup1.cif

e-70-0o809-sup1.cif (19.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814014317/jj2188Isup2.hkl

e-70-0o809-Isup2.hkl (248.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814014317/jj2188Isup3.cdx

Supporting information file. DOI: 10.1107/S1600536814014317/jj2188Isup4.cml

CCDC reference: 977614

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES